2020
DOI: 10.3390/mi11121117
|View full text |Cite
|
Sign up to set email alerts
|

A New MIMU/GNSS Ultra-Tightly Coupled Integration Architecture for Mitigating Abrupt Changes of Frequency Tracking Errors

Abstract: We present a new ultra-tightly coupled (UTC) integration architecture of a micro-electromechanical inertial measurement unit (MIMU) and global navigation satellite system (GNSS) to reduce the performance degradation caused by abrupt changes of frequency tracking errors. A large frequency error will lead to a decrease in the carrier-to-noise ratio (C/N0) estimate and an increase in the code discriminator estimation error. The disruptive effects of frequency errors on the estimation of C/N0 and on the code discr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 23 publications
0
2
0
Order By: Relevance
“…This approach contributes to enhancing the precision of the entire navigation system. When passing through a tunnel, although the signal is blocked and the information is inaccurate, the attitude information in the TMR digital compass is accurate and can continue to provide attitude correction for the [ 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 ].…”
Section: Design Of High-precision Portable Digital Compass Systemmentioning
confidence: 99%
“…This approach contributes to enhancing the precision of the entire navigation system. When passing through a tunnel, although the signal is blocked and the information is inaccurate, the attitude information in the TMR digital compass is accurate and can continue to provide attitude correction for the [ 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 ].…”
Section: Design Of High-precision Portable Digital Compass Systemmentioning
confidence: 99%
“…Gan et al deduced a mathematical model of GNSS/INS-integrated navigation in their research and summarized the navigation state and measurement model in the algorithm [15]. Liu et al proposed an ultra-tightly coupled integration system architecture based on INS and GNSS that can effectively suppress error divergence and signal lock-out [16]. Qin et al proposed a low-cost VTL/IMU-integrated navigation structure based on the principle of integrated navigation, which has a good dynamic performance [17].…”
Section: Related Workmentioning
confidence: 99%