A globally convergent algorithm is presented for the total, or partial, factorization of a polynomial. Firstly, a circle is found containing all the zeros. Secondly, a search procedure locates smaller circles, each containing a zero, and the multiplicities are then calculated. Thirdly, a simultaneous Iteration Function is used to accelerate convergence. The Iteration Function is chosen from a class of such functions derived herein to deal with the general case of multiple zeros; various properties of these functions are also discussed. Finally, sample numerical results are given which demon-strate the effectiveness of the algorithm.