1986
DOI: 10.1111/j.1755-3768.1986.tb06897.x
|View full text |Cite
|
Sign up to set email alerts
|

A new method for exact measurements of visual acuity

Abstract: The paper presents a new test method for investigations of threshold curves for the resolving power of the eye and for exact measurements of visual acuity. This method measures static visual acuity within confidence limits of 9% compared to the acuity steps in Snellen notation of 33% to 50%. Furthermore, the method introduces the slope of the threshold curve as a parameter of suggested importance in the judgement of visual capability. The test mathematic is based on a method described by Finney (1952) for calc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

1997
1997
2019
2019

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 5 publications
0
4
0
Order By: Relevance
“…In our former paper 52 we concluded that thresholding the visual psychometric function of a given subject provides the most precise acuity result without any bias 52,54 . If we express the letter size s , in logMAR units:where α denotes the visual angle of the stroke width of letters, then the relation represents the psychometric function of vision 5557 . We describe its profile by the sigmoid-shape logistic function L ( s ), which is the most common two-parameter curve used to approximate any psychometric function 55,56,58 .…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…In our former paper 52 we concluded that thresholding the visual psychometric function of a given subject provides the most precise acuity result without any bias 52,54 . If we express the letter size s , in logMAR units:where α denotes the visual angle of the stroke width of letters, then the relation represents the psychometric function of vision 5557 . We describe its profile by the sigmoid-shape logistic function L ( s ), which is the most common two-parameter curve used to approximate any psychometric function 55,56,58 .…”
Section: Methodsmentioning
confidence: 99%
“…We describe its profile by the sigmoid-shape logistic function L ( s ), which is the most common two-parameter curve used to approximate any psychometric function 55,56,58 . We linearly transform the logistic function to ensure its limits correspond to the theoretically expected RR values, according to the total number of possible responses 57 (i.e. all 26 letters of the English alphabet).…”
Section: Methodsmentioning
confidence: 99%
“…}\end{equation}\end{document}The x mp parameter sets the midpoint position of the sigmoid, while k /4 determines the steepness of the curve at this point. To make sure that the limits of the psychometric function correspond to the theoretically expected RR values, it has to be further transformed linearly as22,27: \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\begin{equation}\tag{6}L^{\prime} (x) = {{25} \over {26}} \cdot L(x) + {1 \over {26}}{\rm ,}\end{equation}\end{document}so that \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{\lim _{x \to \infty }}L^{\prime} (x) = 1\end{document}, and \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{\lim _{x \to - \infty }}L^{\prime} (x) = 1/26\end{document} according to the total number of potential answers.…”
Section: Methods and Measurementsmentioning
confidence: 99%
“…In this case, the measured P recognition probability values at the x = log 10 ( α ) letter sizes are fitted by a monotonic differentiable S-shaped curve, the so-called psychometric function of vision 16,2426. Visual acuity is determined by the x 0 letter size at which the L(x) psychometric function intersects the theoretical P 0 = 0.5 probability threshold,22,27,28 that is: \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\begin{equation}\tag{3}L(x)\left| {_{x = {x_0}} = {P_0} \Rightarrow {\cal V} \equiv {x_0}} \right. {\rm .…”
Section: Introductionmentioning
confidence: 99%