During the Early Jurassic, reefs in the shallow seas of the Atlas Rift experienced substantial changes as they recovered from the end-Triassic mass extinction. Excellent Lower Jurassic reef deposits documenting this change occur in the Central High Atlas region of Morocco, and herein we describe Owl Olistolith, a micro-olistolith found in lower Pliensbachian-aged (∼ 188.7 million years ago) Moroccan strata. The olistolith records the composition of a reef that grew within the Atlas rift zone and represents a snapshot of reef recovery ∼ 10 million years after the end-Triassic mass extinction. Owl Olistolith is derived from a reef that was originally situated on an outer platform within fair weather wave base; it broke loose and was transported to deeper water and deposited amongst marls. Corals and microbialites formed the primary framework of the reef; microproblematica, foraminifera, and other minor components were also present. The reef can be divided into two dominant facies: a microbialite facies that contains no corals (54%–94% microbialites), and a coral-microbialite facies with substantial proportions of both microbialite (23%–50%) and corals (14%–72%). The micro-olistolith contains at least 15 distinct coral types. In this study, seven coral genera were identified, three of which represent taxa that span the Triassic/Jurassic boundary, including Coryphyllia, Stylophyllopsis, and Margarosmilia. These results indicate that, although surviving taxa played a significant role, newly evolved corals were the most important taxa in the reestablishment of reef ecosystems in the Early Jurassic of Morocco.