2003
DOI: 10.1002/cncr.11748
|View full text |Cite
|
Sign up to set email alerts
|

A neurocomputational model for prostate carcinoma detection

Abstract: BACKGROUND Current guidelines for prostate carcinoma screening rely primarily on the digital rectal examination (DRE) and prostate specific antigen (PSA). Well described patient risk factors for prostate carcinoma also include age, ethnicity, family history, and complexed PSA. However, due to the nonlinear relation of each of these variables with prostate carcinoma, it is difficult to predict reliably each patient's risk based on linear univariate analysis. The authors investigated a neural network to model th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
25
1
3

Year Published

2004
2004
2015
2015

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 32 publications
(29 citation statements)
references
References 40 publications
0
25
1
3
Order By: Relevance
“…Bu nedenle gereksiz biyopsilerden kaçınmak için çeşitli araştırmacı gruplar tarafından öngörü nomogramları geliştirilmiştir. Bu nomogramlar oluşturulurken, yaş, ırk, aile öyküsü, PRM, PSA, PSAD ve TRUS bulguları gibi değişkenler temel alınmaktadır (15,16). Çalışmamızdaki tüm hastaların PSA değerleri 2,5-10 ng/ ml arasındadır ve prostat kanseri oranımız %18,1 olarak saptanmıştır.…”
Section: Bulgularunclassified
“…Bu nedenle gereksiz biyopsilerden kaçınmak için çeşitli araştırmacı gruplar tarafından öngörü nomogramları geliştirilmiştir. Bu nomogramlar oluşturulurken, yaş, ırk, aile öyküsü, PRM, PSA, PSAD ve TRUS bulguları gibi değişkenler temel alınmaktadır (15,16). Çalışmamızdaki tüm hastaların PSA değerleri 2,5-10 ng/ ml arasındadır ve prostat kanseri oranımız %18,1 olarak saptanmıştır.…”
Section: Bulgularunclassified
“…The ratio of free PSA to total PSA (fPSA/tPSA or %fPSA) can increase specificity of tPSA 2 . Multivariate models combining tPSA, %fPSA or complexed PSA, age, status of digital rectal examination (DRE) or prostate volume are increasingly used to further improve PCa detection rate 3–8 . Comparison studies using receiver operator characteristic (ROC) curve analysis on different classification models like logistic regression (LR) based nomograms or artificial neural networks (ANN) have been recently reviewed 9–11 …”
Section: Introductionmentioning
confidence: 99%
“…2 Multivariate models combining tPSA, %fPSA or complexed PSA, age, status of digital rectal examination (DRE) or prostate volume are increasingly used to further improve PCa detection rate. [3][4][5][6][7][8] Comparison studies using receiver operator characteristic (ROC) curve analysis on different classification models like logistic regression (LR) based nomograms or artificial neural networks (ANN) have been recently reviewed. [9][10][11] With the increasing use of free available internet-based models for PCa detection as provided by Finne et al (two models at http:// urologie.charite.de Link: ProstataClass), one must pay more attention to validation studies of these models.…”
Section: Introductionmentioning
confidence: 99%
“…However, logistic regression has a limited capacity to handle very complex data, and ANNs are better for detection, especially of nonlinear relationships among multiple variables [25]. These and other ANNs were trained with different input variables such as tPSA, f/tPSA, complexed PSA, age, race, family history, prostate volume, prostate volume indexes, findings from TRUS, or status of DRE [21–24,26–30]. As prostate volume (measured by TRUS) and status of DRE are more subjective measurements, they were not included in the present study.…”
Section: Introductionmentioning
confidence: 99%