2015
DOI: 10.1007/s11538-015-0088-2
|View full text |Cite
|
Sign up to set email alerts
|

A Multiscale Model of Cardiovascular System Including an Immersed Whole Heart in the Cases of Normal and Ventricular Septal Defect (VSD)

Abstract: A mathematical and computational model combining the heart and circulatory system has been developed to understand the hemodynamics of circulation under normal conditions and ventricular septal defect (VSD). The immersed boundary method has been introduced to describe the interaction between the moving two-dimensional heart and intracardiac blood flow. The whole-heart model is governed by the Navier-Stokes system; this system is combined with a multi-compartment model of circulation using pressure-flow relatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 28 publications
0
1
0
Order By: Relevance
“…Here, it should be mentioned a very interesting 3D model of lungs containing living cells, which were infected with real respiratory syncytial viruses [14]. There are also a number of 3D or 2D computer models, e.g., an interesting connection of 2D model of the heart with a simple 0D model of the vascular system [15].…”
Section: Approaches To Cardiovascular and Respiratory Systems Modellingmentioning
confidence: 99%
“…Here, it should be mentioned a very interesting 3D model of lungs containing living cells, which were infected with real respiratory syncytial viruses [14]. There are also a number of 3D or 2D computer models, e.g., an interesting connection of 2D model of the heart with a simple 0D model of the vascular system [15].…”
Section: Approaches To Cardiovascular and Respiratory Systems Modellingmentioning
confidence: 99%