The need for on-demand QoS support for communications over satellite is of primary importance for distributed multimedia applications. This is particularly true for the return link which is often a bottleneck due to the large set of end-users accessing a very limited uplink resource. Facing this need, Demand Assignment Multiple Access (DAMA) is a classical technique that allows satellite operators to offer various types of services, while managing the resources of the satellite system efficiently. Tackling the quality degradation and delay accumulation issues that can result from the use of these techniques, this paper proposes an instantiation of the Application Layer Framing (ALF) approach, using a crosslayer interpreter (xQoS-Interpreter). The information provided by this interpreter is used to manage the resource provided to a terminal by the satellite system in order to improve the quality of multimedia presentations from the end user's point of view. Several experiments are carried out for different loads on the return link. Their impact on QoS is measured through different application as well as network level metrics.