2021
DOI: 10.1016/j.ast.2021.106525
|View full text |Cite
|
Sign up to set email alerts
|

A multi-body control approach for flapping wing micro aerial vehicles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
13
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(13 citation statements)
references
References 56 publications
0
13
0
Order By: Relevance
“…The multi‐body dynamics model of FWMAV contains three rigid bodies: the FWMAV body, the left and right wings. The translational and rotational motion dynamics of FWMAV are expressed as Equations (4) and (5), respectively 33 arrayarrayi=13false[mifalse(trueboldv˙i+truebold-italicρ¨cifalse)false]=boldFaero+boldFg$$ \sum \limits_{i=1}^3\left[{m}_i\left({\dot{\mathbf{v}}}_i+{\ddot{\boldsymbol{\rho}}}_{ci}\right)\right]={\mathbf{F}}_{aero}+{\mathbf{F}}_g $$ m2boldr2prefix×false(trueboldv˙2+truebold-italicρ¨c2false)+m3boldr3prefix×false(trueboldv˙3+truebold-italicρ¨c3false)+arrayarrayi=13false[false(trueboldH˙i+mibold-italicρciprefix×trueboldv˙ifalse)false]=boldMaero+boldMg$$ {m}_2{\mathbf{r}}_2\times \left({\dot{\mathbf{v}}}_2+{\ddot{\boldsymbol{\rho}}}_{c2}\right)+{m}_3{\mathbf{r}}_3\times \left({\dot{\mathbf{v}}}_3+{\ddot{\boldsymbol{\rho}}}_{c3}\right)+\sum \limits_{i=1}^3\left[\left({\dot{\mathbf{H}}}_i+{m}_i{\boldsymbol{\rho}}_{ci}\times {\dot{\mathbf{v}}}_i\right)\right]={\mathbf{M}}_{aero}+{\mathbf{M}}_g $$ where truebold-italicρ¨c2=...…”
Section: Problem Formulationmentioning
confidence: 99%
“…The multi‐body dynamics model of FWMAV contains three rigid bodies: the FWMAV body, the left and right wings. The translational and rotational motion dynamics of FWMAV are expressed as Equations (4) and (5), respectively 33 arrayarrayi=13false[mifalse(trueboldv˙i+truebold-italicρ¨cifalse)false]=boldFaero+boldFg$$ \sum \limits_{i=1}^3\left[{m}_i\left({\dot{\mathbf{v}}}_i+{\ddot{\boldsymbol{\rho}}}_{ci}\right)\right]={\mathbf{F}}_{aero}+{\mathbf{F}}_g $$ m2boldr2prefix×false(trueboldv˙2+truebold-italicρ¨c2false)+m3boldr3prefix×false(trueboldv˙3+truebold-italicρ¨c3false)+arrayarrayi=13false[false(trueboldH˙i+mibold-italicρciprefix×trueboldv˙ifalse)false]=boldMaero+boldMg$$ {m}_2{\mathbf{r}}_2\times \left({\dot{\mathbf{v}}}_2+{\ddot{\boldsymbol{\rho}}}_{c2}\right)+{m}_3{\mathbf{r}}_3\times \left({\dot{\mathbf{v}}}_3+{\ddot{\boldsymbol{\rho}}}_{c3}\right)+\sum \limits_{i=1}^3\left[\left({\dot{\mathbf{H}}}_i+{m}_i{\boldsymbol{\rho}}_{ci}\times {\dot{\mathbf{v}}}_i\right)\right]={\mathbf{M}}_{aero}+{\mathbf{M}}_g $$ where truebold-italicρ¨c2=...…”
Section: Problem Formulationmentioning
confidence: 99%
“…They are derived computationally or experimentally with various assumptions, ranging from time-invariant linear to nonlinear time-periodic models [58][59][60]. One of the main purposes of obtaining a dynamic model is to design a flight controller with various control techniques and schemes, such as PID [34,61], linear-quadratic-Gaussian [62], state feedback [63,64], nonlinear [65][66][67], sliding mode [68,69], robust [70,71], adaptive [72], adaptive neural network [73,74], and model-free [75]. While many dynamic models and controllers have been successfully developed, only a limited number have been implemented on tailless FWMAVs because some tailless FWMAVs cannot generate sufficient lift to perform free flight for implementation and verification.…”
Section: Introductionmentioning
confidence: 99%
“…Micro Aerial Vehicles (MAV) [1]- [6] have attracted much attention because of their special applications. An important application is military reconnaissance, which can be equipped to soldiers' squads for enemy reconnaissance and surveillance, monitoring chemical, nuclear or biological weapons, and reconnoitre inside buildings.…”
Section: Introductionmentioning
confidence: 99%