Abstract:One of the open problems in understanding (0,2) mirror symmetry concerns the construction of Toda-like Landau-Ginzburg mirrors to (0,2) theories on Fano spaces. In this paper, we begin to fill this gap by making an ansatz for (0,2) Toda-like theories mirror to (0,2) supersymmetric nonlinear sigma models on products of projective spaces, with deformations of the tangent bundle, generalizing a special case previously worked out for P 1 × P 1 . We check this ansatz by matching correlation functions of the B/2-twisted Todalike theories to correlation functions of corresponding A/2-twisted nonlinear sigma models, computed primarily using localization techniques. These (0,2) Landau-Ginzburg models admit redundancies, which can lend themselves to multiple distinct-looking representatives of the same physics, which we discuss.