2021
DOI: 10.1109/twc.2021.3076039
|View full text |Cite
|
Sign up to set email alerts
|

A Joint Filter and Spectrum Shifting Architecture for Low Complexity Flexible UFMC in 5G

Abstract: The hardware realization of Universal Filtered Multi Carrier (UFMC) architecture has attracted significant attention in fifth generation (5G) and beyond. In addition to the flexibility in fast Fourier transform (FFT)-length, a flexible prototype filter in combination with multiplicative complex spectrum shifting co-efficients is required for realizing flexible UFMC architecture. The existing architectures of UFMC transmitter commonly adopted fixed-size FFT-length, number of subbands, subband size, and filter-l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 40 publications
0
1
0
Order By: Relevance
“…Because of end-device power and resource constraints, computational complexity in hardware implementation becomes important in UFMC systems. In reality, the most resource-intensive components in UFMC systems are the Inverse Discrete Fourier Transform/Inverse Fast Fourier Transform (IDFT/IFFT) and pulse-shaping filters [10,11]. For this reason, proposed a 64-point IFFT instead of the more common 1024-point IFFT.…”
Section: Introductionmentioning
confidence: 99%
“…Because of end-device power and resource constraints, computational complexity in hardware implementation becomes important in UFMC systems. In reality, the most resource-intensive components in UFMC systems are the Inverse Discrete Fourier Transform/Inverse Fast Fourier Transform (IDFT/IFFT) and pulse-shaping filters [10,11]. For this reason, proposed a 64-point IFFT instead of the more common 1024-point IFFT.…”
Section: Introductionmentioning
confidence: 99%