Evaluating the efficacy of management actions to control invasive species is crucial for maintaining funding and to provide feedback for the continual improvement of management efforts. However, it is often difficult to assess the efficacy of control methods due to limited resources for monitoring. Managers may view effort on monitoring as effort taken away from performing management actions. We developed a method to estimate invasive species abundance, evaluate management effectiveness, and evaluate population growth over time from a combination of removal activities (e.g., trapping, ground shooting) using only data collected during removal efforts (method of removal, date, location, number of animals removed, and effort). This dynamic approach allows for abundance estimation at discrete time points and the estimation of population growth between removal periods. To test this approach, we simulated over 1 million conditions, including varying the length of the study, the size of the area examined, the number of removal events, the capture rates, and the area impacted by removal efforts. Our estimates were unbiased (within 10% of truth) 81% of the time and were correlated with truth 91% of the time. This method performs well overall and, in particular, at monitoring trends in abundances over time. We applied this method to removal data from Mingo National Wildlife Refuge in Missouri from December 2015 to September 2019, where the management objective is elimination. Populations of feral swine on Mingo NWR have fluctuated over time but showed marked declines in the last 3–6 months of the time series corresponding to increased removal pressure. Our approach allows for the estimation of population growth across time (from both births and immigration) and therefore, provides a target removal rate (above that of the population growth) to ensure the population will decline. In Mingo NWR, the target monthly removal rate is 18% to cause a population decline. Our method provides advancement over traditional removal modeling approaches because it can be applied to evaluate management programs that use a broad range of removal techniques concurrently and whose management effort and spatial coverage vary across time.