2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) 2019
DOI: 10.1109/robosoft.2019.8722773
|View full text |Cite
|
Sign up to set email alerts
|

A Grasping Component Mapping Approach for Soft Robotic End-Effector Control

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
5
4

Relationship

3
6

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 27 publications
0
9
0
Order By: Relevance
“…The principle of the control for the SR brace is shown in Figure 5B, which was well documented in Zhou et al (2019). A cascaded control structure was adopted, with a motion-control outer loop and multichannel pressure-control inner loops for each SOA.…”
Section: Actuation and Controlmentioning
confidence: 99%
“…The principle of the control for the SR brace is shown in Figure 5B, which was well documented in Zhou et al (2019). A cascaded control structure was adopted, with a motion-control outer loop and multichannel pressure-control inner loops for each SOA.…”
Section: Actuation and Controlmentioning
confidence: 99%
“…Previous works that derived a latent representation for grasping poses in [ 20 , 21 , 27 , 28 ], showed that the joints angles in the hand are not independently controlled. Also, the grasping poses can be represented in a low-dimensional synergy space.…”
Section: Methodsmentioning
confidence: 99%
“…4 (c) and (d) . The grasping force can be adjusted and controlled by the magnitude of the applied positive pressure [30] , [31] . The hybrid soft gripper provides merits of lightweight, easy control, high compliance and robustness for swab grasping and releasing.…”
Section: Overall Tele-operated Oropharyngeal Swab (Toos) Robot Designmentioning
confidence: 99%
“…The length of centerline \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$l$ \end{document} is the average length of the three driven cables. The curvature and place can be calculated by the trigonometric relationship [30] , [31] . Then, the configuration space parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf {q} = (\alpha, \beta, l) \in \{\mathbf {q}\}$ \end{document} can be expressed by the actuator space parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mathbf {a} = (l_{1}, l_{2}, l_{3}) \in \{\mathbf {a}\}$ \end{document} as: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{align*} \alpha=&\tan ^{-1}\left ({\frac {l_{1} + l_{3} - 2l_{2}}{\sqrt {3}\left ({l_{1} - l_{3}}\right)}}\right) \\ \beta=&\frac {\sqrt {l_{1}^{2} + l_{2}^{2} + l_{3}^ {2} - l_{1}l_{2} - l_{1}l_{3}-l_{2}l_{3}}}{d\left ({l_{1} + l_{2} + l_{3}}\right)} \\ l=&\frac {l_{1} + l_{2} + l_{3}}{3}\tag{1}\end{align*} \end{document} …”
Section: Tss Hand Modelingmentioning
confidence: 99%