Abstract-Biologists hope to address grand scientific challenges by exploring the abundance of data made available through microarray analysis and other high-throughput techniques. However, the impact of this large volume of data is limited unless researchers can effectively assimilate the entirety of this complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression can make use of novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters and achieving data reduction. These tools should allow biologists to develop an intuitive understanding of the structure of biological networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.