2018
DOI: 10.1007/978-3-030-01370-7_37
|View full text |Cite
|
Sign up to set email alerts
|

A Generalised Method for Adaptive Longitudinal Control Using Reinforcement Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 10 publications
0
3
0
Order By: Relevance
“…The authors in [13] propose an end-to-end vision-based ACC solution based on deep RL using the double deep Q-networks method, and which is able to generate a better gap regulated as well as a smoother speed trajectory when compared to a traditional radar-based ACC or human-in-the-loop simulation. Also, the authors in [17] proposed an RL-based ACC solution that is capable of mimicking human-like behavior and is able to accommodate uncertainties, requiring minimal domain knowledge when compared to traditional non-RL-based ACCs in congested traffic scenarios in a crowded highway as well as countryside roads. The work in [26] evaluates the safety impact of ACCs in traffic oscillations on freeways also by using a modified version of IDM in order to simulate the car-following movements using Matlab2014b software, concluding that an ACC system can significantly improve safety only when parameter settings such as larger time gaps, smaller time delays, and larger maximum deceleration rates are maintained.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…The authors in [13] propose an end-to-end vision-based ACC solution based on deep RL using the double deep Q-networks method, and which is able to generate a better gap regulated as well as a smoother speed trajectory when compared to a traditional radar-based ACC or human-in-the-loop simulation. Also, the authors in [17] proposed an RL-based ACC solution that is capable of mimicking human-like behavior and is able to accommodate uncertainties, requiring minimal domain knowledge when compared to traditional non-RL-based ACCs in congested traffic scenarios in a crowded highway as well as countryside roads. The work in [26] evaluates the safety impact of ACCs in traffic oscillations on freeways also by using a modified version of IDM in order to simulate the car-following movements using Matlab2014b software, concluding that an ACC system can significantly improve safety only when parameter settings such as larger time gaps, smaller time delays, and larger maximum deceleration rates are maintained.…”
Section: Related Workmentioning
confidence: 99%
“…More than that, because ACCs are typically approached as a model-based controller design based on an Intelligent Driver Model (IDM), despite performing decently on highways, they lack the ability to adapt to environments or driving preferences, and thus, an RL-based ACC approach is seen as more favorable towards fully autonomous cars which can be fully trusted by humans. Some of the main reasons for this are the advantages of an RL-based ACC approach such as that it does not require a dataset and that training can be realized irrespective of the environment [17].…”
Section: Introductionmentioning
confidence: 99%
“…Readers are referred to Scale (32) for a full list of those public selfdriving datasets, which are filtered by data type, traffic scenario diversity, and annotation. On the other hand, a plethora of research papers (33)(34)(35)(36)(37) have been proposed to accomplish mMP using different learning approaches. With all that being said, it is highly possible that mMP will be the future of AVs, for both level-2 commercial vehicles and the higher-level FSD cars according to the definition of the Society of Automotive Engineers.…”
mentioning
confidence: 99%