Per- and polyfluoroalkyl substances (PFAS) have become one of the most important contaminants due to their ubiquitous presence in the environment and potentially profound impacts on human health and the environment even at parts per trillion (ppt) concentration levels. A growing number of field investigations have revealed that soils act as PFAS reservoirs at many contaminated sites, with significant amounts of PFAS accumulating over several decades. Because PFAS accumulated in soils may migrate downward to contaminate groundwater resources, understanding the fate and transport of PFAS in soils is of paramount importance for characterizing, managing, and mitigating long-term groundwater contamination risks.
Many PFAS are surfactants that adsorb at air–water and solid–water interfaces, which leads to complex transport behaviors of PFAS in soils. Concomitantly, PFAS present in porewater can modify surface tension and other interfacial properties, which in turn may impact variably saturated flow and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in the gas phase) and/or can transform under environmental conditions into persistent PFAS. These nonlinear and coupled processes are further complicated by complexities of the soil environment such as thin water films, spatial heterogeneity, and complex geochemical conditions.
In this commentary, we present an overview of the current challenges in understanding the fate and transport of PFAS in the environment. Building upon that, we identify a few potential areas where porous media research may play an important role in addressing the problem of PFAS contamination in groundwater.