A new water-cooling Gardon-type heat power measuring apparatus is designed to meet the need of heat power source management and distribution. The steady state measurement mathematic model of the apparatus is built up in theory and the system amplification coefficient is defined as the ratio of the heat power to the temperature difference of the device, with which the value of the measured source power can be calculated easily with the corresponding temperature difference. In order to obtain an optimal heat power measuring system, the coefficients that can influence the relationship between the amplification coefficient, the temperature difference, and the heat power are analyzed. On the basis of these analyses, a set of experimental device is constructed and a number of experiments are carried on. Compared with the input heat power sample data, the error of the experimental measuring results is less than ±2%, and the experimental measuring values are in good agreement with the calculated theoretical ones. The heat power measuring apparatus can be applied in heat flux or heat power measurement in other fields due to its simple structure and high accuracy.