We propose a two-level dimmer based on binary distribution matching where a low-rate signal controls the output probability distribution of a high-rate bit sequence, which can be used in region-of-interest (RoI) signaling applications. To reduce the rate loss of the dimmer, we propose the extended multisetpartition distribution matching (EMPDM) algorithm with a novel binary-tree-structure implementation. In addition, we introduce 4p-EMPDM, a compact version of EMPDM, which has a typical composition (TC) and four leading composition pairs (CPs). The codebook of 4p-EMPDM includes only run-length-aware codewords, which reduces the maximum run-length of the transmitted bit sequence by 4.27 times. Hence, it guarantees flicker mitigation for visible-light RoI signaling systems at 6 kHz without using any run-length limited code (non-RLL). Using experimental data collected from the low-rate RoI signaling prototype, we introduced a threshold range where both intensity and area information of the received training symbols can be exploited to optimize the shaping ratios of the 4p-EMPDM dimmer. Because of the non-RLL feature, the proposed system can support soft-decision forwarderror-correction (FEC) decoding to improve reliability. Our system outperforms related systems based on hybrid modulation schemes in terms of spectral efficiency, bit rate, and minimum required optical clock rate.