Unpredictable natural disasters brought by extreme climate change compound difficulties and cause a variety of systemic risks. It is thus critical to provide possibilistic scheduling schemes that simultaneously involve emergency evacuation and relief allocation. But the existing literature seldom takes emergency evacuation and relief supplies as a joint consideration, nor do they explore the impact of an unpredictable flood disaster on the scheduling scheme. A multi-stage stochastic programming model with updating information is constructed in this study, which considers the uncertainty of supply and demand, road network, and multiple types of emergency reliefs and vehicles. In addition, a fuzzy algorithm based on the objective weighting of two-dimensional Euclidean distance is introduced, through moderating an effect analysis of the fuzzy number. Computational results show that humanitarian equity for allocating medical supplies in the fourth period under the medium and heavy flood is about 100%, which has the same as the value of daily and medical supplies within the first and third period in the heavy scenarios. Based on verifying the applicability and rationality of the model and method, the result also presents that the severity of the flood and the fairness of resources is not a simple cause-and-effect relationship, and the consideration of survivor is not the only factor for humanitarian rescue with multi-period. Specifically, paying more attention to a trade-off analysis between the survival probability, the timeliness, and the fairness of humanitarian service is essential. The work provides a reasonable scheme for updating information and responding to sudden natural disasters flexibly and efficiently.