Abstract:We study the systematic numerical approximation of Maxwell's equations in dispersive media. Two discretization strategies are considered, one based on a traditional leapfrog time integration method and the other based on convolution quadrature. The two schemes are proven to be equivalent and to preserve the underlying energy-dissipation structure of the problem. The second approach, however, is independent of the number of internal states and allows to handle rather general dispersive materials. Using ideas of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.