The primary limitations of the quantitative analysis of thermally labile halogenated compounds by traditional gas chromatography (GC) are the inadequacy of identifying the insufficiently volatile impurity (often with a high boiling point) and the difficulty in obtaining a standard substance with a reliable standardized assay. Taking the 4-(Chloromethyl)-5-methyl-1,3dioxol-2-one (DMDO-Cl, 1) as an example, we reported a triphenylmethanamino-derivatization method to overcome the challenges of the assay determination of such species. During the quantification of 1, the presence of GC-undetectable polymeric impurity 10 poses a critical challenge in assessing the material quality. Moreover, the standard substance of 1 is not available on the market due to its inherent instability during storage and handling, further complicating the quantitative analysis. In this work, a precolumn HPLC-UV derivatization method based on triphenylmethanamino-alkylation was developed to quantitatively analyze 1. The resulting derivative 2 exhibits excellent crystallinity and superior physical and chemical stability and possesses effective chromophores for UV detection. The conversion from analyte 1 to derivative 2 demonstrates desirable reactivity and purity, facilitating quantitative analysis using the external standard method. The chemical derivatization-chromatographic detection method was optimized and validated, demonstrating its high specificity, good linearity, precision, accuracy, and stability. This method offers a valuable alternative to the general quantitative NMR (qNMR) detection technique, which exhibits reduced specificity in the presence of increased levels of impurities in compound 1.