2021
DOI: 10.5194/hess-2021-126
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A continental-scale evaluation of the calibration-free complementary relationship with physical, machine-learning, and land-surface models

Abstract: Abstract. The widespread negative correlation between the atmospheric vapor pressure deficit and soil moisture lends strong support to the complementary relationship (CR) of evapotranspiration. While it has showed outstanding performance in predicting actual evapotranspiration (ETa) over land surfaces, the calibration-free CR formulation has not been tested in the Australian continent dominantly under (semi-)arid climates. In this work, we comparatively evaluated its predictive performance with seven physical,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?