Pool boiling heat transfer is recognized as an exceptionally effective method, widely applied across various industries. The adoption of non-azeotropic binary mixtures aligns with the environmental objectives of modern industrial development and enhances the coefficient of performance (COP) in numerous systems. Therefore, investigating the boiling heat transfer characteristics of these mixtures is crucial to improving their industrial usability. In this study, mixtures of ethylene glycol and deionized water (EG/DW) in varying concentrations were chosen as the working fluids. A comprehensive experimental setup was developed, followed by a series of experiments to assess their pool boiling performance. Simultaneously, the thermophysical parameters of these mixtures underwent detailed examination and analysis. The research revealed that the concentration of EG in the mixture markedly affects its thermal properties and temperature glide, both of which are crucial in influencing the heat transfer coefficient. Additionally, six established heat transfer coefficient prediction correlations, primarily designed for pure fluids, have been employed. However, their application to non-azeotropic mixtures under experimental conditions revealed significant deviations. To address this issue, the present study modified existing correlations with the temperature slip characteristics of non-azeotropic mixtures. This process involved recalibrating the wall superheat values in the correlations to reflect the local temperature differential at the boiling point, thereby customizing them for application to non-azeotropic mixtures. The modified correlations highlighted the unique behaviors of non-azeotropic mixtures in boiling heat transfer, demonstrating improved compatibility with these mixtures in a deviation within a permissible 20% range compared with experimental results.