2021
DOI: 10.48550/arxiv.2105.08159
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A comparison of six numerical methods for integrating a compartmental Hodgkin-Huxley type model

Abstract: We compare six numerical integrators' performance when simulating a regular spiking cortical neuron model whose 74-compartments are equipped with eleven membrane ion channels and Calcium dynamics. Four methods are explicit and two are implicit; three are finite difference PDE methods, two are Runge-Kutta methods, and one an exponential time differencing method. Three methods are first-, two commonly considered second-, and one commonly considered fourth-order. Derivations show, and simulation data confirms, th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?