2020
DOI: 10.1111/aor.13802
|View full text |Cite
|
Sign up to set email alerts
|

A 3‐dimensional‐printed left ventricle model incorporated into a mock circulatory loop to investigate hemodynamics inside a severely failing ventricle supported by a blood pump

Abstract: Intraventricular blood stasis is a design consideration for continuous flow blood pumps and might contribute to adverse events such as thrombosis and ventricular suction. However, the blood flow inside left ventricles (LVs) supported by blood pumps is still unclear. In vitro experiments were conducted to imitate how the hydraulic performance of an axial blood pump affects the intraventricular blood flow of a severe heart failure patient, such as velocity distribution, vorticity, and standard deviation of veloc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 38 publications
0
2
0
Order By: Relevance
“…Liu et al developed a MCL using a soft silicone model of the left ventricle based on CT images of a patient heart and thoracic aorta (13). The silicone model was placed inside an acrylic chamber and driven using an electric motor, although details on how this is achieved (be it direct actuation, pneumatic compression, or another method) are not given in the paper.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Liu et al developed a MCL using a soft silicone model of the left ventricle based on CT images of a patient heart and thoracic aorta (13). The silicone model was placed inside an acrylic chamber and driven using an electric motor, although details on how this is achieved (be it direct actuation, pneumatic compression, or another method) are not given in the paper.…”
Section: Discussionmentioning
confidence: 99%
“…This is challenging as HFpEF is a multifactorial disease, typified by four phenotypes (8) which makes the simulation of the condition challenging. Previous attempts at developing a mock circulatory loop (MCL) have utilized single pneumatic chambers (9,10), piston actuated ex-vivo hearts (11, 12), and external drive motors (13). The problems with ex-vivo heart models have been well documented; namely the rapid deterioration of electrophysiological and hemodynamic functions.…”
Section: Introductionmentioning
confidence: 99%