Objective. To identify new tumor marker genes available for early tumor screening, differentially expressed gene profiles of multiple tumors were compared using Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA) databases. As AP1M2 was highly and differentially expressed in invasive breast carcinoma, the purpose of this study was to explore the association of AP1M2 gene with the survival, immune invasion, and tumor neoantigens of patients on a pan-cancer basis. Methods. The expression and distribution of AP1M2 gene in tumor tissues and the corresponding normal control tissues were analyzed using the pan-cancer databases GTEx, CCLE, and TCGA. Kaplan-Meyer survival plots and proportional hazards model (COX) were employed to evaluate actions of AP1M2 on the clinical prognosis of tumor patients. Subsequently, the association of AP1M2 expression with immune invasion in different tumor types was explored. Simultaneously, the investigation of the interrelationship of AP1M2 and tumor neoantigens of the immune system, unstable microsatellite, DNA repair genes, and DNA methyltransferases were explored, and the mutation frequency of AP1M2 gene in diverse tumors was studied. Several tumor types were analyzed using gene-set enrichment analysis (GSEA). Results. AP1M2 was abundantly expressed in a wide range of cancers, and its expression level was positively correlated with the outcome of tumor victims. Through a study on AP1M2 action on clinical prognosis and immune infiltration in tumor patients, AP1M2 expression in breast-infiltrating carcinoma was found to be highly associated with patients’ overall survival and infiltration levels of macrophages, dendritic cells, T cells (CD4+ and CD8+), and B cells. Also, AP1M2 expression was positively correlated with tumor immune neoantigens and microsatellite instability in breast invasive carcinoma. The effect of AP1M2 on tumors was analyzed by GSEA, and findings demonstrated that AP1M2 expression levels in most tumors influenced the activation of tumor-associated pathways and immune-associated pathways. Conclusions. These findings suggest that AP1M2 expression levels are significantly correlated to patients’ outcomes and levels of immune infiltration in most cancer types, including T cells (CD8+ and CD4+), macrophages, neutrophils, and dendritic cells (DCs), particularly in breast cancer. The results indicate that AP1M2 may influence the tumor environment of invasive breast cancer patients and it may be a target contributing to early screening and treatment for breast cancer, helping improve the efficiency of early screening and overall survival rate in invasive breast cancer patients.