Our objectives were to evaluate potential interactions in culture conditions that influence how exogenously dosed branched-chain VFA (BCVFA) would be recovered as elongated fatty acids (FA) or would affect bacterial populations. A 2 × 2 × 2 factorial arrangement of treatments evaluated 3 factors: (1) without versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate; each dose was partially substituted with 13 C-enriched tracers before and during the collection period); (2) high versus low pH (ranging diurnally from 6.3 to 6.8 vs. 5.7 to 6.2); and (3) low versus high particulate-phase passage rate (k p ; 2.5 vs. 5.0%/h) in continuous cultures administered a 50:50 forage: concentrate diet twice daily. Samples of effluent were collected and composited before harvesting bacteria from which FA and DNA were extracted. Profiles and enrichments of FA in bacteria were evaluated by gas chromatography and isotope-ratio mass spectrometry. The 13 C enrichment in bacterial FA was calculated as percentage recovery of dosed 13 C-labeled BCVFA. Dosing BCVFA increased the even-chain iso-FA, preventing the reduced concentration at higher k p and potentially as a physiological response to decreased pH. However, decreasing pH decreased recovery of 13 C in these even-chain FA, suggesting greater reliance on isobutyrate produced from degradation of dietary valine. The iso-FA were decreased, whereas anteiso-FA and 16:0 increased with decreasing pH. Thus, 2-methylbutyrate still appeared to be important as a precursor for anteiso-FA to counter the increased rigidity of bacterial membranes that had more saturated straight-chain FA when pH decreased. Provision of BCVFA stimulated the relative sequence abundance of Fibrobacter and Treponema, both of which require isobutyrate and 2-methylbutyrate. Numerous bacterial community members were shifted by low pH, including increased Prevotella and genera within the phylum Proteobacteria, at the expense of members within phylum Firmicutes. Because of relatively few interactions with pH and k p , supplementation of BCVFA can stimulate neutral detergent fiber degradability via key fibrolytic bacteria across a range of conditions. Decreasing pH shifted bacterial populations and their FA composition, suggesting that further research is needed to distinguish pH from dietary changes.