Lipopolysaccharide (LPS) is a major glycolipid component in the outer leaflet of the outer membrane of Gram-negative bacteria and known as endotoxin exhibited by the lipid A moiety, which serves as a membrane anchor. The effective permeability barrier properties of the outer membrane contributed by the presence of LPS in the extracellular layer of the outer membrane confer Gram-negative bacteria a high resistance against hydrophobic compounds such as antibiotics, bile salts and detergents to survive in harsh environments. The biogenesis of LPS is well studied in Escherichia coli (herewith E. coli) and the LPS transport (Lpt) is carried out by a transenvelope complex composed of seven essential proteins (LptABCDEFG), which are located in the three compartments of the cell such as the outer membrane, the inner membrane and the periplasm. The Lpt system also exists in Anabaena sp. PCC 7120 (herewith Anabaena sp.), however, homologues of LptC and LptE are still missing. BLAST search failed to identify a homologue of LptC, in contrast, the secondary structure analysis using the Pfam database based on the existing ecLptC secondary structure identified one open reading frame All0231 as the putative Anabaena sp. homologue of LptC, which is designated anaLptC. Despite the low sequence similarity, the secondary structure alignment between anaLptC and ecLptC using the HHpred server showed that both proteins share high secondary structural similarities. The genotypic analysis of the insertion mutant anaLptC did not identify a fully segregated genome and its phenotypic analysis revealed that it was sensitive against chemicals, suggesting that the analptC gene is essential for the growth of Anabaena sp. and involved in the outer membrane biogenesis. This is further supported by the observation of the small cell phenotype in the anaLptC mutant via transmission electron microscopy. Moreover, physical interactions between the anaLptC periplasmic domain with anaLptA as well as with anaLptF were established, indicating that the anaLptC periplasmic domain is correctly folded and alone functional and that the transmembrane helix is not required for the interaction with anaLptA and anaLptF. Furthermore, the reduction of the O-antigen containing LPS was observed in the insertion mutant anaLptC and the dissociation constant Kd of the anaLptC periplasmic domain for ecLPS was determined.The three-dimensional structure of the periplasmic domain of anaLptC was solved by X-ray crystallography with a resolution of 2.8 Å. The structural superposition between the ecLptC crystal structure (PDB number 3my2) and the crystal structure of anaLptC periplasmic domain obtained by this study showed the similarity in the folding of the two proteins with a Cα r.m.s.d value of about 1 Å and confirmed that the length of anaLptC is more than two times longer than that of ecLptC. The structural comparison also revealed that both structures share the typical β- jellyroll fold and conserved amino acids, which were shown in ecLptC to bind to LPS in vivo and found in anaLptC. Overall, these data strongly suggest that anaLptC is involved in the transport of LPS and support the model whereby the bridge spanning the inner membrane and the outer membrane would be assembled via interactions of the structurally conserved β-jellyroll domains shared by five (LptACDFG) out of seven Lpt proteins.