2010
DOI: 10.1111/j.1365-2966.2009.15807.x
|View full text |Cite
|
Sign up to set email alerts
|

2D kinematics and physical properties ofz ∼ 3star-forming galaxies

Abstract: We present results from a study of the kinematic structure of star‐forming galaxies at redshift z∼ 3 selected in the VIMOS VLT Deep Survey (VVDS), using integral field spectroscopy of rest‐frame optical nebular emission lines, in combination with rest‐frame UV spectroscopy, ground‐based optical/near‐IR and Spitzer photometry. We also constrain the underlying stellar populations to address the evolutionary status of these galaxies. We infer the kinematic properties of four galaxies: VVDS‐20298666, VVDS‐02029777… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

2
46
0

Year Published

2010
2010
2017
2017

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(48 citation statements)
references
References 63 publications
2
46
0
Order By: Relevance
“…By combining samples spanning a range of star-formation rates and redshifts (Law et al , 2007Yang et al 2008;Garrido et al 2002;Epinat et al 2008b;Epinat, Amram, & Marcelin 2008a;Epinat et al 2009;Lemoine-Busserolle et al 2010;Cresci et al 2009;Contini et al, 2012;Wisnioski et al 2011;Jones et al 2010;Swinbank et al 2012;Green et al 2014), Green et al (2010Green et al ( , 2014 found that velocity dispersion did correlate with the star-formation rate. From this, they suggested that star formation is the energetic driver of galaxy disc turbulence at both high and low redshift.…”
Section: Introductionmentioning
confidence: 96%
“…By combining samples spanning a range of star-formation rates and redshifts (Law et al , 2007Yang et al 2008;Garrido et al 2002;Epinat et al 2008b;Epinat, Amram, & Marcelin 2008a;Epinat et al 2009;Lemoine-Busserolle et al 2010;Cresci et al 2009;Contini et al, 2012;Wisnioski et al 2011;Jones et al 2010;Swinbank et al 2012;Green et al 2014), Green et al (2010Green et al ( , 2014 found that velocity dispersion did correlate with the star-formation rate. From this, they suggested that star formation is the energetic driver of galaxy disc turbulence at both high and low redshift.…”
Section: Introductionmentioning
confidence: 96%
“…Several active processes, including minor and major mergers, smooth accretion, feedback from star formation, and violent disk instabilities, can disrupt or stall disk formation. Indeed, observations indicate that the internal kinematics of star-forming galaxies at this time have large amounts of disordered motions (as measured by the velocity dispersion of the gas s g ) in addition to ordered rotation (V rot ) (e.g., Förster Schreiber et al 2006Schreiber et al , 2009Genzel et al 2006Genzel et al , 2008Law et al 2007Law et al , 2009Law et al , 2012Wright et al 2007;Wright et al 2009;Shapiro et al 2008;Lemoine-Busserolle et al 2010;Jones et al 2010;Swinbank et al 2011;Glazebrook 2013;Newman et al 2013b;Wisnioski et al 2015;Price et al 2016;Simons et al 2016;Mason et al 2017;Straatman et al 2017). Regardless, the majority of massive star-forming galaxies, * >  M M log 10, at this redshift are rotation-dominated ( s > V g rot ), with at least 70% showing disk-like kinematic signatures (Wisnioski et al 2015).…”
Section: Introductionmentioning
confidence: 99%
“…Many dynamical studies have been performed on extended samples of z ∼ 1−2.5 objects Förster Schreiber et al 2006Cresci et al 2009;Erb et al 2006;Law et al 2007Law et al , 2009Epinat et al 2009;Wright et al 2007Wright et al , 2009). However, little is known on the dynamics of galaxies at z > ∼ 2.5, where only a few particular objects have been investigated (Nesvadba et al 2006(Nesvadba et al , 2007(Nesvadba et al , 2008Jones et al 2010;Law et al 2009;Lemoine-Busserolle et al 2010;Swinbank et al 2007Swinbank et al , 2009.…”
Section: Introductionmentioning
confidence: 99%