Guiding the self-assembly of different types of functional molecules into well-defined structures on surfaces is beneficial for both fundamental surface and interface study and emerging application fields, especially molecular and organic electronics. This review focuses on understanding the two-dimensional self-assembly process of telechelic organics, which feature alkoxylene chains terminated with carboxyl groups. With the combined flexibility of alkyl chains and directionality of carboxyl groups, telechelic organics show unique assembly behaviour on two-dimensional surfaces. By increasing the length of the alkoxylene chains, the cavities in the nanoporous networks of telechelic trimesic acid (1,3,5-benzene tricarboxylic acid) derivatives change from hexagonal cavities to irregular cavities on a highly oriented pyrolytic graphite surface. The nanoporous networks provide a flexible host template for host–guest supramolecular chemistry because the cavities framed by the flexible alkoxylene chains can be changed in accordance with the sizes/shapes of the guest molecules. Furthermore, the terminal carboxylic group can form a hydrogen bond with another hydrogen bond partner, leading to multi-component structural motifs and hierarchical assemblies. The unique assembly behaviour of telechelic organics makes them promising structures as important building blocks for the design and construction of complex self-assembled nanoarchitectures.