Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination and visual impairment due to progressive cerebellar and retinal degeneration.Alteration of other nervous tissues also contributes to symptoms. The mechanisms underlying motor incoordination of SCA7 remain to be characterized. SCA7 is caused by a polyglutamine (polyQ) expansion in ATXN7, a member of the transcriptional coactivator SAGA complex, which harbors histone modi cation activities. PolyQ expansion in other proteins is responsible for 5 other SCAs (SCA1-3, 6 and 17). However, the converging and diverging pathophysiological points remain poorly understood. Using a new SCA7 knock-in model carrying 140 glutamines in ATXN7, we analyzed cell-type speci c gene expression in the cerebellum. We show that gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks histone H3 acetylation and H2B ubiquitination. Our results further show that Purkinje cells (PCs) are far the most affected neurons: unlike other cerebellar cell types, PCs show reduced expression of 83 cell-type identity genes, critical for their spontaneous ring activity and synaptic functions. PC gene downregulation precedes morphological alterations, pacemaker dysfunction and motor incoordination. Strikingly, most PC identity genes downregulated in SCA7 mice are also decreased in early symptomatic SCA1 and SCA2 mice, revealing a common signature of early PC pathology involving cGMP-PKG and phosphatidylinositol signaling pathways and long-term depression. Our study thus points out molecular targets for therapeutic development which may prove bene cial for several SCAs. Finally, we show that unlike previous SCA7 mouse models, SCA7 140Q/5Q mice exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology and photoreceptor dystrophy, which account for progressive impairment of behavior, motor and vision functions. Therefore, SCA7 140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.Page 5/52 [42]. While SCA proteins do not share any domain and have different cellular functions, changes in gene expression are central features in most polyQ SCAs. Therefore, the comparison of differentially expressed genes should provide insight into converging disease mechanisms.To get insight into the mechanisms underlying motor incoordination and cerebellar degeneration, we used a new SCA7 knock-in mice line carrying 140 CAG repeats. A comprehensive and longitudinal characterization of this model using a battery of analyses (motor and behavioral tests, retina imaging, MRI, electrophysiology, neuropathology) indicates that SCA7140Q/5Q mice remarkably recapitulate the major clinical features observed in patients, including cerebellar damage, speci c cerebral atrophy, peripheral nerves pathology and photoreceptor dystrophy, which account for prog...