2014
DOI: 10.1139/bcb-2014-0076
|View full text |Cite
|
Sign up to set email alerts
|

The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator

Abstract: Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (S… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 69 publications
0
1
0
Order By: Relevance
“…The AQP translocation pore is defined in the monomer (Figure 1), and thus, AQPs are facultative oligomers [6]. AQPs assemble into stable homotetramers in vivo and in vitro, resulting in formation of an additional fifth pore in the center of the tetramer [7,8,9,10,11,12]. The formation of this additional pore, which possibly allows the flux of gaseous substrates such as CO 2 and NO across the lipid bilayer, is suggested to be a driving force for AQP tetramerization [13,14].…”
Section: Introductionmentioning
confidence: 99%
“…The AQP translocation pore is defined in the monomer (Figure 1), and thus, AQPs are facultative oligomers [6]. AQPs assemble into stable homotetramers in vivo and in vitro, resulting in formation of an additional fifth pore in the center of the tetramer [7,8,9,10,11,12]. The formation of this additional pore, which possibly allows the flux of gaseous substrates such as CO 2 and NO across the lipid bilayer, is suggested to be a driving force for AQP tetramerization [13,14].…”
Section: Introductionmentioning
confidence: 99%