2014
DOI: 10.1038/srep06734
|View full text |Cite
|
Sign up to set email alerts
|

Indium segregation measured in InGaN quantum well layer

Abstract: The indium segregation in InGaN well layer is confirmed by a nondestructive combined method of experiment and numerical simulation, which is beyond the traditional method. The pre-deposited indium atoms before InGaN well layer growth are first carried out to prevent indium atoms exchange between the subsurface layer and the surface layer, which results from the indium segregation. The uniform spatial distribution of indium content is achieved in each InGaN well layer, as long as indium pre-deposition is suffic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
9
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 21 publications
(10 citation statements)
references
References 38 publications
0
9
0
1
Order By: Relevance
“…Carrier localization reduces the effect of nonradiative recombination at the dislocations 26 . The dot-like In-rich InGaN clusters are formed by In aggregation and phase separation of the InGaN layer because of the immiscibility of GaN and InN 27 28 29 . However, the IQE of InGaN-based QWs, which has a spectral range that extends from blue to green wavelengths, drops dramatically because of a crystalline quality issue known as “green gap” 30 31 .…”
mentioning
confidence: 99%
“…Carrier localization reduces the effect of nonradiative recombination at the dislocations 26 . The dot-like In-rich InGaN clusters are formed by In aggregation and phase separation of the InGaN layer because of the immiscibility of GaN and InN 27 28 29 . However, the IQE of InGaN-based QWs, which has a spectral range that extends from blue to green wavelengths, drops dramatically because of a crystalline quality issue known as “green gap” 30 31 .…”
mentioning
confidence: 99%
“…E g of well-known In x Ga 1– x N alloys can also be tuned to 1.8–2.5 eV in the x range of 0.3–0.5 . Such high-indium-content In x Ga 1– x N alloys suffer from indium segregation, leading to the green gap problem in III-nitride-based LEDs. ,,− The indium segregation principally originates from the large lattice mismatch between InN and GaN (Figure b). In contrast, the Mg x Zn 1– x SnN 2 alloys probably do not suffer from such segregation problems because of the small lattice mismatch between ZnSnN 2 and MgSnN 2 , as discussed above.…”
Section: Resultsmentioning
confidence: 99%
“…En la actualidad está bien establecido que el crecimiento epitaxial de QWs de InGaAs o InGaN se caracterizan por una fuerte segregación de átomos de indio que se acumulan en el frente de crecimiento y alteran fuertemente el perfil de la composición de In, al distorsionar las interfaces del crecimiento epitaxial, lo que lleva a una modificación de las propiedades ópticas de los QWs. El efecto de la segregación se ha reportado en varios sistemas de QWs crecidos epitaxialmente; ver Deng et al (2014), Massabuau et al (2017) y Mehrtens et al (2013). En particular, la segregación de indio se produce durante el crecimiento de capas de InGaAs/GaAs, o InGaN/GaN mediante la técnica de Universidad EIA / Rev.EIA.Univ.EIA epitaxia de haces molecular (MBE) tal como aparece en los trabajos de Mehrtens et al (2013) y de Shan et al (2016); así como en la técnica de deposición químico-vapor de metales orgánicos (CVD); ver Bonef et al (2017) y Song et al (2012).…”
Section: Introductionunclassified