Gute Mischung: Ga2O3 mit einstellbaren α‐β‐Oberflächenphasengrenzen übertrifft einzelne α‐ oder β‐Ga2O3‐Oberflächenphasen bei der photokatalytischen Spaltung von Wasser in H2 und O2. Diese gesteigerte Leistung wird vor allem einer effizienten Ladungstrennung und einem effizienten Ladungstransfer über die α‐β‐Phasengrenze zugeschrieben.
Podlike nitrogen‐doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)‐FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I−/I3− redox reaction of dye‐sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)‐FeNi composite. DSSCs with Pod(N)‐FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82 %, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)‐FeNi composite thus shows promise as an environmentally friendly, low‐cost, and highly efficient CE material for DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.