We fabricate a few-layer molybdenum disulfide (MoS₂) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 μs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap.
Noncontact, depth-resolved, optical probing of retinal response to visual stimulation with a <10-m spatial resolution, achieved by using functional ultrahigh-resolution optical coherence tomography (fUHROCT), is demonstrated in isolated rabbit retinas. The method takes advantage of the fact that physiological changes in dark-adapted retinas caused by light stimulation can result in local variation of the tissue reflectivity. fUHROCT scans were acquired from isolated retinas synchronously with electrical recordings before, during, and after light stimulation. Pronounced stimulusrelated changes in the retinal reflectivity profile were observed in the inner͞outer segments of the photoreceptor layer and the plexiform layers. Control experiments (e.g., dark adaptation vs. light stimulation), pharmacological inhibition of photoreceptor function, and synaptic transmission to the inner retina confirmed that the origin of the observed optical changes is the altered physiological state of the retina evoked by the light stimulus. We have demonstrated that fUHROCT allows for simultaneous, noninvasive probing of both retinal morphology and function, which could significantly improve the early diagnosis of various ophthalmic pathologies and could lead to better understanding of pathogenesis.electroretinogram ͉ functional optical coherence tomography ͉ inner plexiform layer ͉ photoreceptors ͉ retinal imaging T he vertebrate retina consists of several distinct layers: nuclear layers containing cell bodies can be differentiated from plexiform layers with axons and dendrites forming the neuronal network that preprocesses light-evoked signals before transmission to the brain. Early stages of retinal disorders are often confined to one of these layers and are manifested by both morphological abnormalities and impaired physiological responses. Detection of such pathologies requires high-resolution imaging methods. Various imaging modalities such as fundus photography, ultrasound imaging, and optical coherence tomography (OCT) are clinically used for imaging retinal morphology. OCT is an emerging imaging technique that allows for noncontact, in vivo visualization of biological tissue morphology with a micrometer-scale resolution at imaging depths of 1-2 mm (1-3). Currently, electrophysiological tests such as electroretinography (ERG) (4) and multifocal ERG (5) are used for clinical assessment of retinal function.More then 25 years ago, it was observed that the isolated retina when stimulated with visible light changes the amount of transmitted near-infrared light (NIR) (6, 7). Photoreceptors (PRs) were determined to be the main source of this effect, and in the following years, this method was used for investigation and quantitative evaluation of the activation of the PR G protein transducin and the time course of transduction events (8-10 and reviewed in ref. 11). In the last few years, other physiological processes at the cellular and subcellular level such as membrane depolarization (12), cell swelling (13), and altered metabolism...
We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ~0.4 nJ energy and an amplitude fluctuation ~0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
We report the fabrication of photonic crystal fibers with a continuously-decreasing zero-dispersion wavelength along their length. These tapered fibers are designed to extend the generation of supercontinuum spectra from the visible into the ultraviolet. We report on their performance when pumped with both nanosecond and picosecond sources at 1.064 microm. The supercontinuum spectra have a spectral width (measured at the 10 dB points) extending from 0.372 microm to beyond 1.75 microm. In an optimal configuration a flat (3 dB) spectrum from 395 to 850 nm, with a minimum spectral power density of 2 mW/nm was achieved, with a total continuum output power of 3.5 W. We believe that the shortest wavelengths were generated by cascaded four-wave mixing: the continuous decrease of the zero dispersion wavelength along the fiber length enables the phase-matching condition to be satisfied for a wide range of wavelengths into the ultraviolet, while simultaneously increasing the nonlinear coefficient of the fiber.
We demonstrate that mode-locking of ytterbium fiber lasers with a carbon nanotube saturable absorber can produce pulses ranging from 20 ps to 2 ns at repetition rates between 21 MHz and 177 kHz, respectively, depending on cavity length. Nonlinear polarization evolution is not responsible for mode-locking. Even in the nanosecond regime, clean single pulses are observed and the pulse train exhibits low jitter. Combined with extremely large chirp, these properties are suited for chirped-pulse amplification systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.