We calculated the longitudinal acoustic phonon limited electron mobility of 14 two dimensional semiconductors with composition of MX 2 , where M (= Mo, W, Sn, Hf, Zr and Pt) is the transition metal, and X is S, Se and Te. We treated the scattering matrix by deformation potential approximation. We found that out of the 14 compounds, MoTe 2 , HfSe 2 and HfTe 2 , are promising regarding to the possible high mobility and finite band gap. The phonon limited mobility can be above 2500 cm 2 V −1 s −1 at room temperature.
Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications.
Neither of the two typical two-dimensional materials, graphene and single layer MoS2, are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX2, where M (=Mo, W, Sn, Hf, Zr and Pt) are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS2, PtS2 and PtSe2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe2 reaches about 4000 cm2·V-1·s-1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.