Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
A honeycomb-like carbon-based network is obtained by in situ nucleation and directed growth of metal-organic framework (MOF) arrays on the surface of layered double hydroxide (LDH) nanoplatelets, followed by a subsequent pyrolysis process, which exhibits largely enhanced electrocatalytic ORR performances. A successful paradigm for the directed growth of highly oriented MOF arrays is demonstrated, with potential applications for energy storage and conversion.
One of the breakthroughs in biomaterials and regenerative medicine in the latest decade is the finding that matrix stiffness affords a crucial physical cue of stem cell differentiation. This statement was recently challenged by another understanding that protein tethering on material surfaces instead of matrix stiffness was the essential cue to regulate stem cells. Herein, we employed nonfouling poly(ethylene glycol) (PEG) hydrogels as the matrix to prevent nonspecific protein adsorption, and meanwhile covalently bound cell-adhesive arginine-glycine-aspartate (RGD) peptides onto the hydrogel surfaces in the form of well-defined nanoarrays to control specific cell adhesion. This approach enables the decoupling of the effects of matrix stiffness and surface chemistry. Mesenchymal stem cells (MSCs) were cultured on four substrates (two compressive moduli of the PEG hydrogels multiplied by two RGD nanospacings) and incubated in the mixed osteogenic and adipogenic medium. The results illustrate unambiguously that matrix stiffness is a potent regulator of stem cell differentiation. Moreover, we reveal that RGD nanospacing affects spreading area and differentiation of rat MSCs, regardless of the hydrogel stiffness. Therefore, both matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate.
Fast electrosynthesis of Fe-containing layered double hydroxide arrays and their highly-efficient electrocatalytic performance toward small molecule oxidation reactions.
Molecules that contain boron-boron multiple bonds are extremely rare due to the electron-deficient nature of boron. Here we report experimental and theoretical evidence of a neutral OCBBCO molecule with some boron-boron triple bond character. The molecule was produced and unambiguously characterized by matrix isolation infrared spectroscopy. Quantum chemical calculations indicate that the molecule has a linear singlet ground state with a very short boron-boron bond length.
A series of novel CoFe-based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered-double-hydroxide (LDH) nanosheets at 300-700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe-x) are highly dependent on the reduction temperature (x). CO hydrogenation experiments are conducted on the CoFe-x catalysts under UV-vis excitation. With increasing LDH-nanosheet reduction temperature, the CoFe-x catalysts show a progressive selectivity shift from CO to CH , and eventually to high-value hydrocarbons (C ). CoFe-650 shows remarkable selectivity toward hydrocarbons (60% CH , 35% C ). X-ray absorption fine structure, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina-supported CoFe-alloy nanoparticles are responsible for the high selectivity of CoFe-650 for C hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar-energy to produce valuable chemicals and fuels from CO .
Two-dimensional (2D) materials have attracted increasing interest in electrochemical energy storage and conversion. As typical 2D materials, layered double hydroxides (LDHs) display large potential in this area due to the facile tunability of their composition, structure and morphology. Various preparation strategies, including in situ growth, electrodeposition and layer-by-layer (LBL) assembly, have been developed to directly modify electrodes by using LDH materials. Moreover, several composite materials based on LDHs and conductive matrices have also been rationally designed and employed in supercapacitors, batteries and electrocatalysis with largely enhanced performances. This feature article summarizes the latest developments in the design, preparation and evaluation of LDH materials toward electrochemical energy storage and conversion.
In this work, by utilizing photochromic spiropyrans conjugated upconversion nanophosphors, we have successfully prepared NIR/visible light tuned interfacially active nanoparticles for the formulation of Pickering emulsions with reversible inversion properties. By loading a model enantioselective biocatalytic active bacteria Alcaligenes faecalis ATCC 8750 in the aqueous phase, we demonstrated for the first time that the multifunctional Pickering emulsion not only highly enhanced its catalytic performance but also relieved the substrate inhibition effect. In addition, product recovery, and biocatalysts and colloid emulsifiers recycling could be easily realized based on the inversion ability of the Pickering emulsion. Most importantly, the utilization of NIR/visible light to perform the reversible inversion without any chemical auxiliaries or temperature variation showed little damage toward the biocatalysts, which was highlighted by the high catalytic efficiency and high enantioselectivity even after 10 cycles. The NIR/visible light controlled Pickering emulsion showed promising potential as a powerful technique for biocatalysis in biphasic systems.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.