Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μmux). Simons Observatory will use 49 modules containing 70,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA / Hz . This impacts the projected SO mapping speed by <8%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
The Simons Observatory is a ground-based cosmic microwave background experiment that consists of three 0.4 m small-aperture telescopes and one 6 m Large Aperture Telescope, located at an elevation of 5300 m on Cerro Toco in Chile. The Simons Observatory Large Aperture Telescope Receiver (LATR) is the cryogenic camera that will be coupled to the Large Aperture Telescope. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date, with a diameter of 2.4 m and a length of 2.6 m. The coldest stage of the camera is cooled to 100 mK, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
We present a 5.4σ detection of the pairwise kinematic Sunyaev-Zeldovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and Planck CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), which overlap with SDSS DR15 over 3,700 sq. deg., and a component-separated map using night-time only observations from 2014-2015 (ACT DR4), overlapping with SDSS DR15 over 2,089 sq. deg. Comparisons of the results from these three maps provide consistency checks in relation to potential frequencydependent foreground contamination. A total of 343,647 galaxies are used as tracers to identify and locate galaxy groups and clusters from which the kSZ signal is extracted using aperture photometry. We consider the impact of various aperture photometry assumptions and covariance estimation methods on the signal extraction. Theoretical predictions of the pairwise velocities are used to obtain best-fit, mass-averaged, optical depth estimates for each of five luminosity-selected tracer samples. A comparison of the kSZderived optical depth measurements obtained here to those derived from the thermal SZ effect for the same sample is presented in a companion paper.
We present measurements of the average thermal Sunyaev Zel'dovich (tSZ) effect from optically selected galaxy groups and clusters at high signal-to-noise (up to 12σ) and estimate their baryon content within a 2.1 0 radius aperture. Sources from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey DR15 catalog overlap with 3,700 sq deg of sky observed by the Atacama Cosmology Telescope (ACT) from 2008 to 2018 at 150 and 98 GHz (ACT DR5), and 2,089 sq deg of internal linear combination component-separated maps combining ACT and Planck data (ACT DR4). The corresponding optical depthsτ, which depend on the baryon content of the halos, are estimated using results from cosmological hydrodynamic simulations assuming an active galactic nuclei feedback radiative cooling model. We estimate the mean mass of the halos in multiple luminosity bins, and compare the tSZ-basedτ estimates to theoretical predictions of the baryon content for a Navarro-Frenk-White profile. We do the same forτ estimates extracted from fits to pairwise baryon momentum measurements of the kinematic Sunyaev-Zel'dovich effect (kSZ) for the same dataset obtained in a companion paper. We find that theτ estimates from the tSZ measurements in this work and the kSZ measurements in the companion paper agree within 1σ for two out of the three disjoint luminosity bins studied, while they differ by 2-3σ in the highest luminosity bin. The optical depth estimates account for one-third to all of the theoretically predicted baryon content in the halos across luminosity bins. Potential systematic uncertainties are discussed. The tSZ and kSZ measurements provide a step toward empirical Compton-ȳ −τ relationships to provide new tests of cluster formation and evolution models.
The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.