COVID-19 is the current public health threat all over the world. Unfortunately, there is no specific prevention and treatment strategy for this disease. We aim to explore the potential role of angiotensin-converting enzyme 2 (ACE2) in this regard through this literature review. As a crucial enzyme of renin-angiotensin-aldosterone system (RAAS), ACE2 not only mediates the virus entry but also affects the pathophysiological process of virus-induced acute lung injury (ALI), as well as other organs’ damage. As interaction of COVID-19 virus spike and ACE2 is essential for virus infection, COVID-19-specific vaccine based on spike protein, small molecule compound interrupting their interaction, human monoclonal antibody based on receptor-binding domain, and recombinant human ACE2 protein (rhuACE2) have aroused the interests of researchers. Meanwhile, ACE2 could catalyze angiotensin II (Ang II) to form angiotensin 1-7 (Ang 1-7), thus alleviates the harmful effect of Ang II and amplifies the protection effect of Ang1-7. ACE inhibitor and angiotensin II receptor blocker (ARB) have been shown to increase the level of expression of ACE2 and could be potential strategies in protecting lungs, heart, and kidneys. ACE2 plays a very important role in the pathogenesis and pathophysiology of COVID-19 infection. Strategies targeting ACE2 and its ligand, COVID-19 virus spike protein, may provide novel method in the prevention and management of novel coronavirus pneumonia.
Acute kidney injury (AKI) is a complex clinical disorder associated with poor outcomes. Targeted regulation of the degree of inflammation has been a potential strategy for AKI management. Macrophages are the main effector cells of kidney inflammation. However, macrophage heterogeneity in ischemia reperfusion injury induced AKI (IRI‐AKI) remains unclear. Using single‐cell RNA sequencing of the mononuclear phagocytic system in the murine IRI model, the authors demonstrate the complementary roles of kidney resident macrophages (KRMs) and monocyte‐derived infiltrated macrophages (IMs) in modulating tissue inflammation and promoting tissue repair. A unique population of S100a9 hi Ly6c hi IMs is identified as an early responder to AKI, mediating the initiation and amplification of kidney inflammation. Kidney infiltration of S100A8/A9 + macrophages and the relevance of renal S100A8/A9 to tissue injury is confirmed in human AKI. Targeting the S100a8/a9 signaling with small‐molecule inhibitors exhibits renal protective effects represented by improved renal function and reduced mortality in bilateral IRI model, and decreased inflammatory response, ameliorated kidney injury, and improved long‐term outcome with decreased renal fibrosis in the unilateral IRI model. The findings support S100A8/A9 blockade as a feasible and clinically relevant therapy potentially waiting for translation in human AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.