Failing to repair DNA double-strand breaks by either nonhomologous end joining (NHEJ) or homologous recombination (HR) poses a threat to genome integrity, and may have roles in the onset of aging and age-related diseases. Recent work indicates an age-related decrease of NHEJ efficiency in mouse models, but whether NHEJ and HR change with age in humans and the underlying mechanisms of such a change remain uncharacterized. Here, using 50 eyelid fibroblast cell lines isolated from healthy donors at the age of 16-75 years, we demonstrate that the efficiency and fidelity of NHEJ, and the efficiency of HR decline with age, leading to increased IR sensitivity in cells isolated from old donors. Mechanistic analysis suggests that decreased expression of XRCC4, Lig4 and Lig3 drives the observed, age-associated decline of NHEJ efficiency and fidelity. Restoration of XRCC4 and Lig4 significantly promotes the fidelity and efficiency of NHEJ in aged fibroblasts. In contrast, essential HR-related factors, such as Rad51, do not change in expression level with age, but Rad51 exhibits a slow kinetics of recruitment to DNA damage sites in aged fibroblasts. Further rescue experiments indicate that restoration of XRCC4 and Lig4 may suppress the onset of stress-induced premature cellular senescence, suggesting that improving NHEJ efficiency and fidelity by targeting the NHEJ pathway holds great potential to delay aging and mitigate aging-related pathologies. Cell Death and Differentiation (2016) 23, 1765-1777; doi:10.1038/cdd.2016.65; published online 8 July 2016Aging in mammals is a complex biological process, characterized by several major hallmarks.1,2 Of all the features associated with aging, a gradual destabilization of genome integrity is perhaps the most fundamental as increased genomic instability may lead to other age-associated phenotypes such as cellular senescence and stem cell exhaustion. Indeed, for the past several decades, numerous studies have indicated that DNA mutations and chromosomal rearrangements gradually accumulate with age.3-6 Of all types of DNA lesions, which may contribute to the gradual loss of genetic information during aging, DNA double-strand breaks (DSBs) are the most hazardous to cells as unrepaired or inappropriately repaired DSBs can cause insertions, deletions and chromosomal rearrangements. Using different analysis approaches, several studies have demonstrated that aging is often associated with the accumulation of DNA DSBs in various organs and tissues in mammals such as mice and humans. [7][8][9][10][11] Moreover, a recent study provides direct evidence that an induction of DNA DSBs in genomes causes aging in mouse livers.12 However, why DNA DSBs accumulate with age remains an open question. A number of studies indicate that it may be a consequence of a progressing imbalance between DNA damage and the efficiency of the molecular machinery that catalyzes DNA repair. 7,9,11 Two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) evolved to repair DNA DSBs. NHEJ is...
The amyloid precursor protein (APP) is a broadly expressed transmembrane protein that has a significant role in the pathogenesis of Alzheimer's disease (AD). APP can be cleaved at multiple sites to generate a series of fragments including the amyloid β (Aβ) peptides and APP intracellular domain (AICD). Although Aβ peptides have been proposed to be the main cause of AD pathogenesis, the role of AICD has been underappreciated. Here we report that APP induces AICD-dependent cell death in Drosophila neuronal and non-neuronal tissues. Our genetic screen identified the transcription factor forkhead box O (FoxO) as a crucial downstream mediator of APP-induced cell death and locomotion defect. In mammalian cells, AICD physically interacts with FoxO in the cytoplasm, translocates with FoxO into the nucleus upon oxidative stress, and promotes FoxO-induced transcription of pro-apoptotic gene Bim. These data demonstrate that APP modulates FoxO-mediated cell death through AICD, which acts as a transcriptional co-activator of FoxO.
Cellular reprogramming is an emerging strategy for delaying the aging processes. However, a number of challenges, including the impaired genome integrity and decreased pluripotency of induced pluripotent stem cells (iPSCs) derived from old donors, may hinder their potential clinical applications. The longevity gene, Sirtuin 6 (SIRT6), functions in multiple biological processes such as the maintenance of genome integrity and the regulation of somatic cell reprogramming. Here, for the first time, we demonstrate that MDL-800, a recently developed selective SIRT6 activator, improved genomic stability by activating two DNA repair pathways-nonhomologous end joining (NHEJ) and base excision repair (BER) in old murine-derived iPSCs. More interestingly, we found that pretreating old murine iPSCs, which normally exhibit a restricted differentiation potential, with MDL-800 promoted the formation of teratomas comprised of all three germ layers and robustly stimulated chimera generation. Our findings suggest that pharmacological activation of SIRT6 holds great promise in treating aging-associated diseases with iPSC-based cell therapy.
Understanding differences in DNA double-strand break (DSB) repair between tumor and normal tissues would provide a rationale for developing DNA repair-targeted cancer therapy. Here, using knock-in mouse models for measuring the efficiency of two DSB repair pathways, homologous recombination (HR) and nonhomologous end-joining (NHEJ), we demonstrated that both pathways are up-regulated in hepatocellular carcinoma (HCC) compared with adjacent normal tissues due to altered expression of DNA repair factors, including PARP1 and DNA-PKcs. Surprisingly, inhibiting PARP1 with olaparib abrogated HR repair in HCC. Mechanistically, inhibiting PARP1 suppressed the clearance of nucleosomes at DNA damage sites by blocking the recruitment of ALC1 to DSB sites, thereby inhibiting RPA2 and RAD51 recruitment. Importantly, combining olaparib with NU7441, a DNA-PKcs inhibitor that blocks NHEJ in HCC, synergistically suppressed HCC growth in both mice and HCC patient-derived-xenograft models. Our results suggest the combined inhibition of both HR and NHEJ as a potential therapy for HCC.
The homologous recombination (HR) pathway is a promising target for cancer therapy as it is frequently upregulated in tumors. One such strategy is to target tumors with cancer-specific, hyperactive promoters of HR genes including RAD51 and RAD51C. However, the promoter size and the delivery method have limited its potential clinical applications. Here we identified the ~2.1 kb promoter of XRCC2, similar to ~6.5 kb RAD51 promoter, as also hyperactivated in cancer cells. We found that XRCC2 expression is upregulated in nearly all types of cancers, to a degree comparable to RAD51 while much higher than RAD51C. Further study demonstrated that XRCC2 promoter is hyperactivated in cancer cell lines, and diphtheria toxin A (DTA) gene driven by XRCC2 promoter specifically eliminates cancer cells. Moreover, lentiviral vectors containing XRCC2 promoter driving firefly luciferase or DTA were created and applied to subcutaneous HeLa xenograft mice. We demonstrated that the pXRCC2-luciferase lentivirus is an effective tool for in vivo cancer visualization. Most importantly, pXRCC2-DTA lentivirus significantly inhibited the growth of HeLa xenografts in comparison to the control group. In summary, our results strongly indicate that virus-mediated delivery of constructs built upon the XRCC2 promoter holds great potential for tumor diagnosis and therapy.
Lycorine, a natural compound isolated from the traditional Chinese medicinal herb Lycoris radiata, exhibits multiple pharmacological effects, such as anti‐inflammatory, antiviral, and anticancer effects. Accumulating evidence also indicates that lycorine might hold the potential to treat age‐associated Alzheimer's disease. However, whether lycorine is involved in delaying the onset of cellular senescence and its underlying mechanisms has not been determined. Here, we demonstrate that the salt of lycorine, lycorine hydrochloride, significantly suppressed stress‐induced premature cellular senescence (SIPS) by ~2‐fold, as determined by senescence‐associated beta‐galactosidase (SA‐β‐gal) staining and the expression of p16 and p21. In addition, pretreating cells with lycorine hydrochloride significantly inhibited the expression of CXCL1 and IL1α, two factors of the senescence‐associated secreted phenotype (SASP) in SIPS cells. Further experiments revealed that lycorine hydrochloride promoted both the homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways of DNA double‐strand break (DSB) repair. Mechanistic studies suggested that lycorine hydrochloride treatment promoted the transcription of SIRT1 and SIRT6, critical longevity genes positively regulating both HR and NHEJ repair pathways, thereby stimulating DSB repair and stabilizing genomes. Inhibiting SIRT1 enzymatic activity abrogated the protective effect of lycorine hydrochloride on delaying the onset of SIPS, repairing DSBs, and restoring genome integrity. In summary, our work indicates that lycorine hydrochloride might hold therapeutic potential for treating age‐associated diseases or promoting healthy aging by stabilizing genomes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers