Due to its environmental and resource impacts, the geochemistry of uranium in coal is of both academic and practical significance. In order to give a comprehensive summary about the geochemistry of uranium in coals, the abundance, distribution, and modes of occurrence of uranium in Chinese coals were reviewed in this paper. Although some coals from southwestern and northwestern China are significantly enriched in uranium, the common Chinese coals are of a comparable uranium concentration to the world coals. The roof and floor rocks, and parting of coalbeds, or coal benches that are close to the surrounding rock are favorable hosts for uranium in one coalbed. The uranium concentrations in coals of different ages decrease in this order, e.g., Paleogene and Neogene > Late Permian > Late Triassic > Late Carboniferous and Early Permian > Late Jurassic and Early Cretaceous > Early and Middle Jurassic. Uranium in Chinese coals is mainly associated with organic matter, and is correspondingly enriched in subbituminous coal and lignite.
Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L) and HAP-treated (>1.69 mg L) columns than that in untreated (<0.2 mg L) columns, and they were both over the class V limit (0.4 mg L) mandated by the Chinese National Quality Standards for Surface Waters (GB 3838-2002). PDP application decreased the leachate Cu, Pb, and Cd effectively; however, HAP addition increased leachate Cu and Pb. HAP and PDP applications decreased the soil CaCl-extractable and exchangeable fraction of Cu, Pb, and Cd, and increased resin P. However, eluviations transformed the heavy metals from inactive to active fractions and reduced soil labile P. These findings showed that HAP and PDP had a potential risk of excessive P-induced eutrophication. Meanwhile, more attention should be paid to the leaching loss of multiple metals because phosphate amendments might promote the leaching of some metals while immobilizing others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.