Human respiratory syncytial virus (HRSV) is the most common respiratory pathogen among infants and young children. To investigate the prevalence and genetic characteristics of HRSVs circulating in South Korea, we analyzed medical records of patients and performed molecular analysis of the G-protein gene of viruses detected from nasopharyngeal aspirates (NPA) of admitted patients at the Pediatrics Department of Chungbuk National University Hospital from April 2008 to April 2010. Epidemiological data revealed that the prevalence of HRSV infection was high during both winter seasons (October 2008 to February 2009 and November 2009 to February 2010). Of the 297 positive NPA specimens from infants or children tested, 67% were identified as HRSV-A while 33% were HRSV-B. The HRSV subgroup B was the most dominant in December 2008, but its dominance was dramatically replaced by HRSV subgroup A strains by February 2009. Phylogenetic analysis of the G protein sequences of HRSVs revealed novel genotypes within the HRSV-A (genotype CB-A) and B (genotypes BA11 and CB-B) subgroups in South Korea in addition to other strains identified in other countries. Molecular analysis also revealed genetic variability at the C-terminal end of the G proteins of the two HRSV subgroups, suggesting selection pressure in this region, which may potentially impact immune recognition. This is the first report of these HRSV variants in South Korea, indicating active genetic evolution of HRSV strains. Therefore, this study provides information on the molecular epidemiology of current HRSVs in the country and presents data for comparative analysis with other HRSV strains circulating worldwide.
Long-term allergen exposure can attenuate inflammation and revert airway hyperreactivity to normal responsiveness. A model of such reversal was established in which airway hyperreactivity and inflammation in ovalbumin-sensitized and challenged mice were decreased after multiple daily airway challenges. This change in responsiveness and inflammation was associated with a transition from a helper T cell Type 2 to a helper T cell Type 1 cytokine-biased profile in bronchoalveolar lavage fluid. Cell transfer from long-term exposed mice into hyperreactive mice also restored normal airway responsiveness, establishing the mechanism underlying the reversal of the hyperreactivity as active suppression, but did not affect eosinophilic airway inflammation. Conversely, airway hyperreactivity, suppressed as a result of long-term allergen exposure, could be reestablished by depleting gammadelta T cells, in particular Vgamma4+ cells. Antigen-specific tolerance of alphabeta T cells or suppression by non-gammadelta T cells did not play a role in the reversal to normal airway responsiveness and gammadelta T cells did not play a role in the regulation of the allergic inflammatory response. These findings show that normal responsiveness in previously hyperreactive mice, achieved after long-term allergen challenge, is based on several, apparently independent regulatory mechanisms. One of these, focused on airway responsiveness, involves active suppression and requires gammadelta T cells.
To investigate the genetic characteristics of human influenza viruses circulating in Chungbuk province, we tested 510 clinical samples of nasopharyngeal suction from pediatric patients diagnosed with respiratory illness between June 2007 and June 2008. Genetic characterization of the HA genes of H3N2 isolates indicated the relative higher similarity to A/Virginia/04/07 (99.6%) rather than that of A/Wisconsin/67/2005 (98.4%), a Northern Hemisphere 2007-2008 vaccine strain, based on amino acid sequences. We found several altered amino acids at the H3 HA1 antigenic sites compared with the vaccine strain; K140I at site A, K158R at site B, and K173N (H471) or K173Q, and S262N at site E, but there was no antigenic shift among the H3N2 viruses. Interestingly, A/Cheongju/H383/08 and A/Cheongju/H407/08 isolates had single amino acid substitution at D151G on the catalytic site of the N2 NA while A/Cheongju/H412/08 and A/Cheongju/ H398/07 isolates had one amino acid deletion at residue 146. Furthermore, we found that 25% (3 out of 12 isolates) of the H3N2 subtype viruses had the amino acid substitution at position 31 on the M2 protein (Aspartic acid to Asparagine) and confirmed their drug-resistance by biological assays. Taken together, the results of this study demonstrated continuous evolutions of human H3N2 viruses by antigenic drift and also highlighted the need to closely monitor antigenic drug resistance in influenza A viruses to aid in the early detection of potentially pandemic strains, as well as underscore the need for new therapeutics.
The biosynthetic pathway for the pteridine moiety of cyanopterine, as well as tetrahydrobiopterine, has been investigated in Synechocystis sp. PCC 6803. Open reading frames slr0426, slr1626, slr0078 and sll0330 of the organism putatively encoding GTP cyclohydrolase I, dihydroneopterine aldolase, 6-pyruvoyltetrahydropterine synthase and sepiapterine reductase, respectively, have been cloned into T7-based vectors for expression in Escherichia coli. The recombinant proteins have been purified to homogeneity and demonstrated to possess expected genuine activities except that of sll0330. Our result is the first direct evidence for the functional assignment of the open reading frames in Synechocystis sp. PCC 6803. Furthermore, the 6-pyruvoyltetrahydropterine synthase gene is demonstrated for the first time in prokaryotes. Based on the result, biosynthesis of cyanopterine is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.