Precompetitive collaborations on new enabling technologies for research and development are becoming popular among pharmaceutical companies. The Enabling Technologies Consortium (ETC), a precompetitive collaboration of leading innovative pharmaceutical companies, identifies and executes projects, often with third-party collaborators, to develop new tools and technologies of mutual interest. Here, we report the results of one of the first ETC projects: the development of a user-friendly population balance model (PBM)-based crystallization simulator software. This project required the development of PBM software with integrated experimental data handling, kinetic parameter regression, interactive process simulation, visualization, and optimization capabilities incorporated in a computationally efficient and robust software platform. Inputs from a team of experienced scientists at 10 ETC member companies helped define a set of software features that guided a team of crystallization modelers to develop software incorporating these features. Communication, continuous testing, and feedback between the ETC and the academic team facilitated the software development. The product of this project, a software tool called CrySiV, an acronym for Crystallization Simulation and Visualization, is reported herein. Currently, CrySiV can be used for cooling, antisolvent, and combined cooling and antisolvent crystallization processes, with primary and secondary nucleation, growth, dissolution, agglomeration, and breakage of crystals. This paper describes the features and the numerical methods of the software and presents two case studies demonstrating its use for parameter estimation. In the first case study, a simulated data set is used to demonstrate the capabilities of the software to find kinetic parameters and its goodness of fit to a known solution. In the second case study, the kinetics of an antisolvent crystallization of indomethacin from a ternary solvent system are estimated, providing a practical example of the tool.
This study compares the use of wet milling and indirect ultrasound for promoting nucleation and controlling the particle size during the continuous crystallization of a hard-to-nucleate active pharmaceutical ingredient (API). Both an immersion and an external wet mill installed on a recirculation loop were investigated. It was found that all methodologies significantly improved the nucleation kinetics, and the effects of key process parameters (e.g., mill speed, temperature, and ultrasound intensity) on particle size were experimentally investigated. A minimum d 50 of 27 and 36.8 μm was achieved when using the wet mill and ultrasound, respectively. The effectiveness of wet milling was demonstrated in a three-stage mixed suspension mixed product removal continuous crystallization of the API that was operated continuously for 12 h (eight residence times), achieving a steady state with minimal fouling. Strategies for improving the overall robustness of the setup in routine manufacturing are discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers