Abstract. The in vivo metabolic clearance in human has been successfully predicted by using in vitro data of metabolic stability in cryopreserved preparations of human hepatocytes. In the predictions by human hepatocytes, the systematic underpredictions of in vivo clearance have been commonly observed among different datasets. The regression-based scaling factor for the in vitro-to-in vivo extrapolation has mitigated discrepancy between in vitro prediction and in vivo observation. In addition to the elimination by metabolic degradation, the important roles of transporter-mediated hepatic uptake and canalicular excretion have been increasingly recognized as a rate-determining step in the hepatic clearance. It has been, therefore, proposed that the in vitro assessment should allow the evaluation of clearances for both transporter(s)-mediated uptake/excretion and metabolic degradation. This review first outlines the limited ability of subcellular fractions such as liver microsomes to predict hepatic clearance in vivo. It highlights the advantages of cryopreserved human hepatocytes as one of the versatile in vitro systems for the prediction of in vivo metabolic clearance in human at the early development stage. The following section discusses the mechanisms underlying the systematic underprediction of in vivo intrinsic clearance by hepatocytes. It leads to the proposal for the assessment of hepatic uptake clearance as one of the kinetically important determinants for accurate predictions of hepatic clearance in human. The judicious combination of advanced technologies and understandings for the drug disposition allows us to rationally optimize new chemical entities to the drug candidate with higher probability of success during the clinical development.
ABSTRACT:A novel and convenient method was established for the prediction of in vivo metabolic clearance in human liver. The present method applied the in vitro-in vivo extrapolation paradigm previously established in rats to the in vitro data obtained from cryopreserved human hepatocytes. Predicted hepatic availability and clearance were compared with the reported oral bioavailability and plasma clearance in humans for 14 clinically used drugs (naloxone, buspirone, verapamil, lidocaine, imipramine, metoprolol, timolol, antipyrine, diazepam, quinidine, caffeine, propranolol, diclofenac, and phenacetin). A large interindividual variation was observed in the intrinsic metabolic clearance among separate cryopreserved preparations from different subjects. The prediction generally resulted in a marked underestimation when the biologically based scaling (cells/kg) from pooled preparation of two selected lots, which were 3-to 4-fold larger than the biologically based scaling factor. These data suggested that the calibration of inherent interindividual variation of metabolic activities among different cryopreserved preparations of human hepatocytes to obtain the empirical scaling factor, which is applicable only to the preparation used, was an essential step for more reliable and quantitative prediction of in vivo metabolic activity in humans.Hepatic clearance for the metabolism of compounds kinetically consists of two major determinants: intrinsic (metabolic) clearance of the unbound compound and unbound fraction of compound in the blood (or plasma when corrected by the blood-to-plasma partition). Generally, the intrinsic clearance for the unbound compound is measured in vitro by the incubation of isolated hepatocytes or subcellular fractions such as S-9 and microsomes in the protein-free medium. The in vitro metabolic parameters thus obtained are extrapolated by using anatomical parameters such as cell numbers and protein content in the intact liver for the prediction of in vivo metabolic activity (Houston and Carlile, 1997;Iwatsubo et al., 1997;Obach, 1999). Separate experiments necessarily are further carried out to measure the unbound fraction in the plasma. Many technical problems including adsorption of compounds to the apparatus during the equilibrium dialysis and ultra-filtration often hamper the accuracy of the evaluated values (Bertilsson et al., 1979;Desoye, 1988). To improve the accuracy and avoid complexity for predicting in vivo metabolic clearance from in vitro experiments, we have recently developed a novel and convenient in vitro method for predicting in vivo metabolic clearance by using freshly isolated rat hepatocytes suspended in rat serum (Shibata et al., 2000). Oral bioavailability and hepatic clearance for 16 widely used compounds were well predicted directly from the in vitro metabolic clearance values obtained from a single incubation without separate evaluation of unbound fraction in the plasma. The purposes of the present study were to 1) determine whether the same methodology was applicable ...
Vertebrate cells have evolved two major pathways for repairing DNA double-strand breaks (DSBs), homologous recombination (HR) and nonhomologous DNA end-joining (NHEJ). To investigate the role of DNA ligase IV (Lig4) in DSB repair, we knocked out the Lig4 gene (LIG4) in the DT40 chicken B-lymphocyte cell line. The LIG4 ؊/؊ cells showed a marked sensitivity to X-rays, bleomycin, and VP-16 and were more x-ray-sensitive in G 1 than late S or G2͞M, suggesting a critical role of Lig4 in DSB repair by NHEJ. In support of this notion, HR was not impaired in LIG4 ؊/؊ cells. LIG4 ؊/؊ cells were more x-ray-sensitive when compared with KU70 ؊/؊ DT40 cells, particularly at high doses. Strikingly, however, the x-ray sensitivity of KU70 ؊/؊ ͞LIG4 ؊/؊ double-mutant cells was essentially the same as that of KU70 ؊/؊ cells, showing that Lig4 deficiency has no effect in the absence of Ku. These results indicate that Lig4 is exclusively required for the Ku-dependent NHEJ pathway of DSB repair and that other DNA ligases (I and III) do not substitute for this function. Our data may explain the observed severe phenotype of Lig4-deficient mice as compared with Ku-deficient mice.
Thioredoxin-binding protein-2 (TBP-2)/vitamin D 3 upregulated protein 1 is an endogenous molecule interacting with thioredoxin (TRX), negatively regulating TRX function, and being implicated in the suppression of tumor development and metastasis. We found that TBP-2 ectopically expressed in the breast cancer cell line MCF-7 was localized predominantly in the nucleus exhibiting growth suppressive activity. The nuclear accumulation of endogenous TBP-2 protein was also demonstrated when the cells were treated with an anticancer drug, suberoylanilide hydroxamic acid. To investigate the mechanism underlying the nuclear localization, we performed a yeast two-hybrid screening and identified importin ␣ 1 (Rch1) as a protein interacting with TBP-2. The physical interaction between TBP-2 and Rch1 was confirmed with a glutathione S-transferase pull-down assay. The interaction of TBP-2 was specific to Rch1 among other importin ␣ subfamilies (Qip1 and NPI-1), and amino acids 1-227 of TBP-2 were sufficient for both the interaction with Rch1 and the nuclear localization, although there is no typical nuclear localization signal in this sequence. The expression of short interfering RNA of Rch1 suppressed suberoylanilide hydroxamic acid-induced nuclear accumulation of TBP-2. Collectively, our results strongly suggest that an interaction with importin system is required for TBP-2 nuclear translocation and growth control tightly associated with TRX-dependent redox regulation of transcription factors.
Lactobacillus gasseri LA39 and L. reuteri LA6 isolated from feces of the same human infant were found to produce similar cyclic bacteriocins (named gassericin A and reutericin 6, respectively) that cannot be distinguished by molecular weights or primary amino acid sequences. However, reutericin 6 has a narrower spectrum than gassericin A. In this study, gassericin A inhibited the growth of L. reuteri LA6, but reutericin 6 did not inhibit the growth of L. gasseri LA39. Both bacteriocins caused potassium ion efflux from indicator cells and liposomes, but the amounts of efflux and patterns of action were different. Although circular dichroism spectra of purified bacteriocins revealed that both antibacterial peptides are composed mainly of ␣-helices, the spectra of the bacteriocins did not coincide. The results of D-and L-amino acid composition analysis showed that two residues and one residue of D-Ala were detected among 18 Ala residues of gassericin A and reutericin 6, respectively. These findings suggest that the different D-alanine contents of the bacteriocins may cause the differences in modes of action, amounts of potassium ion efflux, and secondary structures. This is the first report that characteristics of native bacteriocins produced by wild lactobacillus strains having the same structural genes are influenced by a difference in D-amino acid contents in the molecules.
Thioredoxin (TRX) is released from various types of mammalian cells despite no typical secretory signal sequence. We show here that a redox-active site in TRX is essential for its release from T lymphocytes in response to H2O2 and extracellular TRX regulates its own H2O2-induced release. Human T cell leukemia virus type I-transformed T lymphocytes constitutively release a large amount of TRX. The level of TRX release is augmented upon the addition of H2O2, but suppressed upon the addition of N-acetylcysteine. In the culture supernatant of a Jurkat transfectant expressing the tagged TRX-wild type (WT), the tagged TRX protein is rapidly released at 1 h and kept at a constant level until 6 h after the addition of H2O2. In contrast, another type of transfectant expressing the tagged TRX mutant (C32S/C35S; CS) fails to release the protein. H2O2-induced release of TRX from the transfectant is inhibited by the presence of rTRX-WT in a dose-dependent manner. Preincubation of the transfectant with rTRX-WT for 1 h at 37°C, but not 0°C, results in a significant suppression of the TRX release, reactive oxygen species, and caspase-3 activity induced by H2O2, respectively. Confocal microscopy and Western blot analysis show that extracellular rTRX-WT added to the culture does not obviously enter T lymphocytes until 24 h. These results collectively suggest that the oxidative stress-induced TRX release from T lymphocytes depends on a redox-sensitive event and may be regulated by negative feedback loops using reactive oxygen species-mediated signal transductions.
In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.