Identification of a non-thermal X-ray burst with the Galactic magnetar SGR J1935+2154 and a fast radio burst using
We report on analysis of observations of the bright transient X-ray pulsar Swift J0243.6+6124 obtained during its 2017-2018 giant outburst with Insight-HXMT, NuSTAR, and Swift observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
Cytochrome P450s metabolize the naturally occurring nephrotoxin aristolochic acid. Using liver-specific cytochrome P450 reductase-null mice we found that a low but lethal dose of aristolochic acid I was ineffective in wild-type mice. Induction of hepatic CYP1A by 3-methylcholanthrene pretreatment markedly increased the survival rate of wild type mice given higher doses and these mice were protected from aristolochic acid I-induced renal injury. Clearance of aristolochic acid I in null mice was slower compared to control and the 3-methylcholanthrene-pretreated wild type mice. The levels of aristolochic acid I in the kidney and liver were much higher in null mice but much lower in 3-methylcholanthrene-treated compared to control wild type mice. Hepatic microsomes from 3-methylcholanthrene-treated wild type mice had greater activity compared to untreated mice. Finally, aristolochic acid I was more cytotoxic than its major metabolite aristolactam I and this cytotoxicity was decreased in human renal tubular epithelial HK2 cells in the presence of a reconstituted hepatic microsome-cytosol (S9) system. These results indicate that hepatic P450s play an important role in metabolizing aristolochic acid I into less toxic metabolites and thus have a detoxification role in aristolochic acid I-induced kidney injury.
Abstract. Using a dynamic enclosure, the exchange rates of carbonyl sulfide (COS) between the atmosphere and 18 soils from 12 provinces in China were investigated. The emission or uptake of COS from the soils was highly dependent on the soil type, soil temperature, soil moisture, and atmospheric COS mixing ratio. In general, with the only exception being paddy soils, the soils in this investigation acted as sinks for atmospheric COS under wide ranges of soil temperature and soil moisture. Two intensively investigated wheat soils and one forest soil had optimal soil temperatures for COS uptake of around 15 • C, and the optimal soil water content varied from 13% to 58%. COS emission rates from the two paddy soils increased exponentially with increment of the soil temperature, and decreased with increasing the soil water content. However, negligible emission was found when the paddy soils were under waterlogging status. The observed compensation points for various soils were different and increased significantly with soil temperature. The laboratory simulation agreed with the preliminary field measurements for the paddy soil in Jiaxing, Zhejiang province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.