Caenorhabditis elegans is an accepted model host to study host-bacteria interactions in the gut, in addition to being a simple model with which to study conserved aspects of biological signaling pathways in intestinal environments, because these nematode worms have similar intestinal cells to those of humans. Here, we used C. elegans to develop a new in vivo screening system for potential probiotic lactic acid bacteria (LAB). Initially, critical colonization ability of LAB strains isolated from Korean infant feces was screened in the worm intestinal tract over a period of 5 d. Furthermore, we investigated host health-promoting activities, including longevity-extending effects and immune-enhancing activities against foodborne pathogen infection. We identified 4 LAB strains that were highly persistent in the nematode gut and that significantly prolonged the longevity of C. elegans and improved the survival of C. elegans in response to infection by Staphylococcus aureus. The 4 LAB strains we identified showed resistance to acid and bile conditions, assimilated cholesterol, and were able to attach to a mucus layer. The 4 LAB isolates were identified as Lactobacillus plantarum using 16S rRNA sequencing analysis. Taken together, we developed a direct in vivo screening system using C. elegans to study host health-promoting LAB. Our system is simple, rapid, cost-effective, and reliable, and we anticipate that this system will result in the discovery of many more potential probiotic bacteria for dairy foods.
Aims: Indole is a signalling molecule, produced by a number of Gram-positive and Gram-negative bacteria both in nature as well as clinical environments. Here, we explored the effect of bacterial indole and one of its main derivatives on the virulence of the fungal pathogen Candida albicans. Methods and Results: We found that indole and its derivate indole-3-acetonitrile (IAN) did not affect the viability of C. albicans. Interestingly, indole and IAN repressed C. albicans biofilm formation as well as the attachment of C. albicans to intestinal epithelial HT-29 cells and inhibited the ability of the yeast to make filaments that are the main virulence factor of C. albicans. In addition, we used the heterologous model host Caenorhabditis elegans to demonstrate in vivo that the presence of indole or IAN attenuates C. albicans infection (P = 0Á0188 and P < 0Á0001 for indole and IAN, respectively, compared to worms exposed to C. albicans DAY185 alone) and decreases fungal colonization in the nematode gut. Importantly, quantitative real-time polymerase chain reaction (qRT-PCR) results showed that in C. albicans, indole and IAN strongly stimulated the transcription of NRG1. Conclusions: Indole and IAN attenuates fungal virulence by regulating the transcription of NRG1, a transcriptional factor that influences filamentation and biofilm formation in C. albicans. Significance and Impact of the Study: Our findings indicate that the bacterial signalling molecules indole and its derivatives play an inter-kingdom role in dynamic network of microbiota and directly modulate the virulence of fungal C. albicans via NRG1.
The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries.
The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks.
This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high-cholesterol group may have been the result of an antioxidative defense mechanism that regulated cholesterol synthesis and metabolism. Therefore, F-cMRP and cMRP have the potential to play preventive and therapeutic roles in the management of cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.