Multifunctional nanomaterials with integrated diagnostic and therapeutic functions, combination therapy to enhance treatment efficacy, as well as low toxicity have drawn tremendous attentions. Herein, we report a multifunctional theranostic agent based on peptide (LyP-1)-labeled ultrasmall semimetal nanoparticles of bismuth (Bi-LyP-1 NPs). Ultrasmall Bi NPs (3.6 nm) were facilely synthesized using oleylamine as the reducing agent and exhibited a higher tumor accumulation after being conjugated with the tumor-homing peptide LyP-1. The abilities to absorb both ionizing radiation and the second near-infrared (NIR-II) window laser radiation ensured that Bi-LyP-1 NPs are capable of dual-modal computed tomography/photoacoustic imaging and efficient synergistic NIR-II photothermal/radiotherapy of tumors. Moreover, Bi-LyP-1 NPs could be rapidly cleared from mice through both renal and fecal clearance and almost completely cleared after 30 days. Such multifunctional nanoparticles as efficient cancer theranostic agents, coupled with fast clearance and low toxicity, shed light on the future use of semimetal nanoparticles for biomedicine.
Radio-and photodynamic therapies are the first line of cancer treatments but suffer from poor light penetration and less radiation accumulation in soft tissues with high radiation toxicity. Therefore, a multifunctional nanoplatform with diagnosis-assisted synergistic radio-and photodynamic therapy and tools facilitating early prognosis are urgently needed to fight the war against cancer. Further, integrating cancer therapy with untargeted metabolomic analysis would collectively offer clinical pertinence through facilitating early diagnosis and prognosis. Here, we enriched scintillation of CeF 3 nanoparticles (NPs) through codoping Tb 3+ and Gd 3+ (CeF 3 :Gd 3+ ,Tb 3+ ) for viable clinical approach in the treatment of deep-seated tumors. The codoped CeF 3 :Gd 3+ ,Tb 3+ scintillating theranostic NPs were then coated with mesoporous silica, followed by loading with rose bengal (CGTS-RB) for later computed tomography (CT)-and magnetic resonance image (MRI)-guided X-ray stimulated synergistic radio-and photodynamic therapy (RT+XPDT) using low-dose, one-time X-ray irradiation. The results corroborated an efficient tumor regression with synergistic RT+XPDT relative to single RT. Global untargeted metabolome shifts highlighted the mechanism behind this efficient tumor regression using RT, and synergistic RT+XPDT treatment is due to the starvation of nonessential amino acids involved in protein and DNA synthesis and energy regulation pathways necessary for growth and progression. Our study also concluded that tumor and serum metabolites shift during disease progression and regression and serve as robust biomarkers for early assessment of disease state and prognosis. From our results, we propose that codoping is an effective and extendable technique to other materials for gaining high optical yield and multifunctionality and for use in diagnostic and therapeutic applications. Critically, the integration of multifunctional theranostic nanomedicines with metabolomics has excellent potential for the discovery of early metabolic biomarkers to aid in better clinical disease diagnosis and prognosis.
Multifunctional nanomaterials that have integrated diagnostic and therapeutic functions and low toxicity, and can enhance treatment efficacy through combination therapy have drawn tremendous amounts of attention. Herein, a newly developed multifunctional theranostic agent is reported, which is PEGylated W-doped TiO
2
(WTO) nanoparticles (NPs) synthesized via a facile organic route, and the results demonstrated strong absorbance of these WTO NPs in the second near-infrared (NIR-II) window due to successful doping with W. These PEGylated WTO NPs can absorb both NIR-II laser and ionizing radiation, rendering them well suited for dual-modal computed tomography/NIR-II photoacoustic imaging and synergistic NIR-II photothermal/radiotherapy of tumors. In addition, the long-term in vivo studies indicated that these PEGylated WTO NPs had no obvious toxicity on mice in vivo, and they can be cleared after a 30-day period. In summary, this multifunctional theranostic agent can absorb both NIR-II laser and ionizing radiation with negligible toxicity and rapid clearance, therefore it has great promise for applications in imaging and therapeutics in biomedicine.
The
abundant species of functional nanomaterials have attracted
tremendous interests as components to construct multifunctional composites
for cancer theranostics. However, their distinct chemical properties
substantially require a specific strategy to integrate them in harmony.
Here, we report the preparation of a distinctive multifunctional composite
by encapsulating small-sized semiconducting copper bismuth sulfide
(CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles
in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles,
followed by loading an anticancer drug, doxorubicin (DOX). Such composites
can be used for tetramodal imaging, including traditional computed
tomography and magnetic resonance imaging and, recently, for photoacoustic
imaging and fluorescence imaging. With a pH-responsive release of
the encapsulated components, synergistic radio-chemotherapy with a
high (87.6%) tumor inhibition efficiency is achieved at moderate doses
of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This
promising strategy highlights the extending capacity of zeolitic imidazolate
frameworks to encapsulate multiple distinct components for enhanced
cancer imaging and therapy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.