An equivalent mechanical model with the equivalent physical meaning of mass-spring-damping is proposed for cylindrical lithium-ion batteries through experiments and theory. The equivalent mechanical model of a cylindrical lithium-ion battery consists of a spring-damping parallel unit. Therefore, a spring-damping parallel unit connecting a damping unit in series is selected to construct the constitutive characteristics of the battery under mechanical abuse. Comparison results show that the equivalent mechanical model can more effectively describe the mechanical properties of the batteries than most cubic fitting models, of which the average relative error of the equivalent mechanical model under different states-of-charge is less than 6.75%. Combined with the proposed equivalent mechanical model, the failure process of the batteries was simulated and analyzed using LS-Dyna and HyperWorks. Under rigid rod tests, failure occurred at the core and bottom of the batteries; under hemispherical punch tests, failure occurred at the core and top, consistent with the experimental results. The average prediction error for the failure displacement under different abuse conditions is less than 4% in the simulations. The equivalent mechanical model requires only a few parameters and can be recognized easily. In the future, the model can be used in safety warning devices based on mechanical penetration.
The finite-element model of pure electric bus has been built and the free model analysis, displacement and stress analysis under bending condition and torsion condition have been conducted. Optimally design the pure electric bus frame based on multiple constrains. Reduce the body frame quality by 4.3% and meanwhile meet the modal and stress requirements.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.