Activity recognition which aims to accurately distinguish human actions in complex environments plays a key role in human-robot/computer interaction. However, long-lasting and similar actions will cause poor feature sequence extraction and thus lead to a reduction of the recognition accuracy. We propose a novel discriminative deep model (D3D-LSTM) based on 3D-CNN and LSTM for both single-target and interaction action recognition to improve the spatiotemporal processing performance. Our models have several notable properties: 1) A real-time feature fusion method is used to obtain a more representative feature sequence through composition of local mixtures for enhancing the performance of discriminating similar actions; 2) We introduce an improved attention mechanism that focuses on each frame individually by assigning different weights in real-time; 3) An alternating optimization strategy is proposed for our model to obtain parameters with the best performance. Because the proposed D3D-LSTM model is efficient enough to be used as a detector that recognizes various activities, a Real-set database is collected to evaluate action recognition in complex real-world scenarios. For long-term relations, we update the present memory state via the weight-controlled attention module that enables the memory cell to store better long-term features. The densely connected bimodal modal makes local perceptrons of 3D-Conv motion-aware and stores better short-term features. The proposed D3D-LSTM model has been evaluated through a series of experiments on the Real-set and open-source datasets, i.e. SBU-Kinect and MSR-action-3D. Experimental results show that the proposed D3D-LSTM model achieves new state-of-the-art results, including pushing the average rate of the SBU-Kinect to 92.40% and the average rate of the MSR-action-3D to 95.40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.