*Correspondence to: edman.tsang@chem.ox.ac.uk.The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydro-deoxygenation catalysts during the upgrading process. However, traditionally prepared Co-MoS 2 catalysts, although efficient for hydro-desulfurisation, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS 2 monolayer sheets decorated with isolated Co atoms through covalent bonding of Co to sulfur vacancies on the basal planes that, when compared to conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydro-deoxygenation of 4-methylphenol to toluene. The higher activity, allows the reaction temperature to be reduced from the typically used 300 o C to 180 o C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS 2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.