Power line communication (PLC) is increasingly emerging as an important communication technology for the smart-grid environment. As PLC systems use the existing infrastructure, they are always exposed to conducted electromagnetic interference (EMI) from switching mode power converters, which need to be tightly controlled to meet EMC regulations and to ensure the proper operation of the PLC system. For this purpose, spread-spectrum modulation (SSM) techniques are widely adopted to decrease the amplitude of the generated EMI from the power converters so as to comply with EMC regulations. In this paper, the influence of a spread-spectrum-modulated SiC-based buck converter on the G3-PLC channel performance is described in terms of channel capacity reduction using the Shannon–Hartley equation. The experimental setup was implemented to emulate a specific coupling path between the power and communication circuits and the channel capacity reduction was evaluated by the Shannon–Hartley equation in several operating scenarios and compared with the measured frame error rate. Based on the obtained results, SSM provides the EMI spectral peak amplitude reduction required to pass the electromagnetic compatibility (EMC) tests, but results in increased EMI-induced channel capacity degradation and increased transmission error rate in PLC systems.
Since the permeant magnet synchronous generator (PMSG) has many applications in particular safety-critical applications, enhancing PMSG availability has become essential. An effective tool for enhancing PMSG availability and reliability is continuous monitoring and diagnosis of the machine. Therefore, designing a robust fault diagnosis (FD) and fault tolerant system (FTS) of PMSG is essential for such applications. This paper describes an FD method that monitors online stator winding partial inter-turn faults in PMSGs. The fault appears in the direct and quadrature (dq)-frame equations of the machine. The extended Kalman filter (EKF) and unscented Kalman filter (UKF) were used to detect the percentage and the place of the fault. The proposed techniques have been simulated for different fault scenarios using Matlab®/Simulink®. The results of the EKF estimation responses simulation were validated with the practical implementation results of tests that were performed with a prototype PMSG used in the Arab Academy For Science and Technology (AAST) machine lab. The results showed impressive responses with different operating conditions when exposed to different fault states to prevent the development of complete failure.
Power line communication (PLC), which is often used in advanced metering infrastructure (AMI), may be disturbed by adjacent high-power converters. Due to the inherent features of this type of communication, classic methods of improving communication reliability (filtration and circuit separation) cannot be fully applied. Information coding (modulation) methods are used in PLC to increase the data transfer rate and improve noise immunity. Random modulations (RanM) are used in converters to lower emission levels. Therefore, we investigate how the converters’ modulation parameters and coding methods may affect PLC communication reliability in the paper. To this end, we employ an experimental approach. In particular, the analysis of the influence of deterministic modulation (DetM) and (RanM) on the performance of narrowband G3-PLC is shown. We emulated an actual situation where EMI generated by the DC/DC converter disturbed the PLC transmission. The experimental results show the transmission error rates for different operating scenarios. The natural (experimental) system results, due to the complexity of the disturbing signals, differ from the literature data obtained by simulation for normalized signals.
This paper presents the measurement of aggregated conducted emission in the frequency range of 9 kHz to 150 kHz produced by multiple compact fluorescent lamps (CFL) and how it equates to a multiple power converter system. Discrepancies in peak emission measurement results related to this application are illustrated to understand the underlying issue related to volatility of frequency components. Furthermore, this knowledge analyzes the relation of electromagnetic disturbances with respect to different topological network connections. The final presented results constitute theoretical description and statistical information about the characteristics of conducted emission measured in this multi-converter system.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.